964 resultados para first principle calculations
Resumo:
The electronic structure and magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO have been investigated using first-principles methods. We show that the magnetic coupling between Gd or Nd ions in the nearest neighbor sites is ferromagnetic. The stability of the ferromagnetic coupling between Gd ions can be enhanced by appropriate electron doping into ZnO Gd system and the room-temperature ferromagnetism can be achieved. However, for ZnO Nd system, the ferromagnetism between Nd ions can be enhanced by appropriate holes doping into the sample. The room-temperature ferromagnetism can also be achieved in the n-conducting ZnO Nd sample. Our calculated results are in good agreement with the conclusions of the recent experiments. The effect of native defects (V-Zn, V-O) on the ferromagnetism is also discussed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3176490]
Resumo:
Thermally stimulated luminescence spectroscopy has been applied to study the deep centres in unintentionally doped high resistivity GaN epilayers grown by the metal organic chemical vapour deposition method on c-sapphire substrates. Two trap states with activation energies of 0.12 and 0.62 eV are evaluated from two luminescence peaks at 141.9 and 294.7 K in the luminescence curve. Our spectroscopy measurement, in combination with more accurate first-principles studies, provided insights into the microscopic origin of these levels. Our investigations suggest that the lower level at 0.12 eV might originate from C-N, which behaves as a hole trap state; the deeper level at 0.62 eV can be correlated with V-Ga that corresponds to the yellow luminescence band observed in low-temperature photoluminescence spectra.
Electronic structure and magnetic coupling properties of Gd-doped AlN: first-principles calculations
Resumo:
In this work, the electronic structure and magnetic coupling properties of Gd doped AlN have been investigated using first-principles method. We found that in the AlN:Gd system, due to the s-f coupling allowed by the symmetry, the exchange splitting of the conduction band is much larger than that of the valence band, which makes the electron-mediated ferromagnetism possible in this material. This property is also confirmed by the energy differences between anti-ferromagnetic and ferromagnetic phase for Al14Gd2N16 with different concentrations of electrons (holes), as well as by the calculated exchange constants. The result indicates that Gd-doped AlN is a promising candidate for the applications in future spintronic devices.
Resumo:
For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.
Resumo:
We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.
Resumo:
The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain.
Resumo:
KCrF3 has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively.
Resumo:
First principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2k code, have been used to investigate the electronic and magnetic properties of YBaFe2O5, especially as regards the charge-orbital ordering. Although the total 3d charge disproportion is rather small, an orbital order parameter defined as the difference between t(2g) orbital occupations of Fe2+ and Fe3+ cations is large (0,73) and gives unambiguous evidence for charge and orbital ordering: Strong hybridization between O 2p and Fe e(g) states results in the nearly complete loss of the separation between the total charges at the Fe2+ and Fe3+ atoms.
Resumo:
We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.
Resumo:
First-principle calculations are performed to investigate the structural, elastic, and electronic properties of ReB2 and WB2. The calculated equilibrium structural parameters of ReB2 are consistent with the available experimental data. The calculations indicate that WB2 in the P6(3)/mmc space group is more energetically stable under the ambient condition than in the P6/mmm. Based on the calculated bulk modulus, shear modulus of polycrystalline aggregate, ReB2 and WB2 can be regarded as potential candidates of ultra-incompressible and hard materials. Furthermore, the elastic anisotropy is discussed by investigating the elastic stiffness constants. Density of states and electron density analysis unravel the covalent bonding between the transition metal atoms and the boron atoms as the driving force of the high bulk modulus and high shear modulus as well as small Poisson's ratio.
Resumo:
This thesis is focused on the application of numerical atomic basis sets in studies of the structural, electronic and transport properties of silicon nanowire structures from first-principles within the framework of Density Functional Theory. First we critically examine the applied methodology and then offer predictions regarding the transport properties and realisation of silicon nanowire devices. The performance of numerical atomic orbitals is benchmarked against calculations performed with plane waves basis sets. After establishing the convergence of total energy and electronic structure calculations with increasing basis size we have shown that their quality greatly improves with the optimisation of the contraction for a fixed basis size. The double zeta polarised basis offers a reasonable approximation to study structural and electronic properties and transferability exists between various nanowire structures. This is most important to reduce the computational cost. The impact of basis sets on transport properties in silicon nanowires with oxygen and dopant impurities have also been studied. It is found that whilst transmission features quantitatively converge with increasing contraction there is a weaker dependence on basis set for the mean free path; the double zeta polarised basis offers a good compromise whereas the single zeta basis set yields qualitatively reasonable results. Studying the transport properties of nanowire-based transistor setups with p+-n-p+ and p+-i-p+ doping profiles it is shown that charge self-consistency affects the I-V characteristics more significantly than the basis set choice. It is predicted that such ultrascaled (3 nm length) transistors would show degraded performance due to relatively high source-drain tunnelling currents. Finally, it is shown the hole mobility of Si nanowires nominally doped with boron decreases monotonically with decreasing width at fixed doping density and increasing dopant concentration. Significant mobility variations are identified which can explain experimental observations.
Resumo:
The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high-throughput methods opens the possibility to enhance these empirical structure maps by ab initio calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase separating. In these enhanced maps, the clusters of noncompound-forming systems are much smaller than indicated by the empirical results alone. © 2010 The American Physical Society.
Resumo:
(1x1) and (2x1) reconstructions of the (001) SrTiO3 surface were studied using the first-principles full-potential linear muffin-tin orbital method. Surface energies were calculated as a function of TiO2 chemical potential, oxygen partial pressure and temperature. The (1x1) unreconstructed surfaces were found to be energetically stable for many of the conditions considered. Under conditions of very low oxygen partial pressure the (2x1) Ti2O3 reconstruction [Martin R. Castell, Surf. Sci. 505, 1 (2002)] is stable. The question as to why STM images of the (1x1) surfaces have not been obtained was addressed by calculating charge densities for each surface. These suggest that the (2x1) reconstructions would be easier to image than the (1x1) surfaces. The possibility that the presence of oxygen vacancies would destabilise the (1x1) surfaces was also investigated. If the (1x1) surfaces are unstable then there exists the further possibility that the (2x1) DL-TiO2 reconstruction [Natasha Erdman Nature (London) 419, 55 (2002)] is stable in a TiO2-rich environment and for p(O2)>10(-18) atm.
Resumo:
First-principles calculations of the Sigma 5(310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However, numerical results show a striking equivalence between the alkali metal Na and the semimetal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unraveled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the net reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.