Structure maps for hcp metals from first-principles calculations


Autoria(s): Levy, O; Hart, GLW; Curtarolo, S
Data(s)

10/05/2010

Identificador

Physical Review B - Condensed Matter and Materials Physics, 2010, 81 (17)

1098-0121

http://hdl.handle.net/10161/3334

1550-235X

http://hdl.handle.net/10161/3334

Idioma(s)

en_US

Relação

Physical Review B - Condensed Matter and Materials Physics

10.1103/PhysRevB.81.174106

Physical Review B

Tipo

Journal Article

Resumo

The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high-throughput methods opens the possibility to enhance these empirical structure maps by ab initio calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase separating. In these enhanced maps, the clusters of noncompound-forming systems are much smaller than indicated by the empirical results alone. © 2010 The American Physical Society.