731 resultados para Transformations (mathematics)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 34B40; secondary: 35Q51, 35Q53

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 16R10, 16R30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Илинка А. Димитрова - Полугрупата Tn от всички пълни преобразувания върху едно n-елементно множество е изучавана в различни аспекти ог редица автори. Обект на разглеждане в настоящата работа е полугрупата Incn състояща се от всички нарастващи пълни преобразувания. Очевидно Incn е подполугрупа на Tn. Доказано е, че всеки елемент на полугрупата Incn от ранг r може да се представи като произведение на идемпотенти от същия ранг и всеки идемпотент от ранг по-малък или равен на r може да се представи като произведение на идемпотенти от ранг r. С помощта на тези твърдения е показано, че полугрупата Incn се поражда от множеството на всички идемпотенти от ранг n − 1 и тъждественото преобразувание. Освен това е доказано, че идемпотентите от ранг n − 1 са неразложими в полугрупата Incn. В резултат на това е получено, че рангът и идемпотичниат ранг на разглежданата полугрупа са равни. Като са използвани тези твърдения е направена пълна класификация на маскималните подполугрупи на полугрупата Incn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Илинка А. Димитрова, Цветелина Н. Младенова - Моноида P Tn от всички частични преобразования върху едно n-елементно множество относно операцията композиция на преобразования е изучаван в различни аспекти от редица автори. Едно частично преобразование α се нарича запазващо наредбата, ако от x ≤ y следва, че xα ≤ yα за всяко x, y от дефиниционното множество на α. Обект на разглеждане в настоящата работа е моноида P On състоящ се от всички частични запазващи наредбата преобразования. Очевидно P On е под-моноид на P Tn. Направена е пълна класификация на максималните подполугрупи на моноида P On. Доказано е, че съществуват пет различни вида максимални подполугрупи на разглеждания моноид. Броят на всички максимални подполугрупи на POn е точно 2^n + 2n − 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as "histogram binning" inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics can be found all over the world, even in what could be considered an unrelated area, like fiber arts. In knitting, crochet, and counted-thread embroidery, we can find concepts of algebra, graph theory, number theory, geometry of transformations, and symmetry, as well as computer science. For example, many fiber art pieces embody notions related with groups of symmetry. In this work, we focus on two areas of Mathematics associated with knitting, crochet, and cross-stitch works – number theory and geometry of transformations.

Relevância:

20.00% 20.00%

Publicador: