Darboux Transformations and Random Point Processes


Autoria(s): Bertola, Marco; Cafasso, Mattia
Contribuinte(s)

Centre de Recherches Mathématiques [Montréal] (CRM) ; Université de Montréal

Laboratoire Angevin de REcherche en MAthématiques (LAREMA) ; Centre National de la Recherche Scientifique (CNRS) - Université d'Angers (UA)

Data(s)

2015

Resumo

International audience

<p>In this paper, we describe a general method to derive formulas relating the gap probabilities of some classical determinantal random point processes (Airy, Pearcey, and Hermite) with the gap probability of the same processes with “wanderers”, “inliers”, and “outliers”. In this way, we generalize the Painlevé-like formula found by Baik for the Baik–Ben Arous–Péché distribution to many different cases, both in the one and multi-time setting. The method is not ad hoc and relies upon the notion of Schlesinger transformations for Riemann–Hilbert problems.</p>

Identificador

hal-01392109

https://hal.archives-ouvertes.fr/hal-01392109

DOI : 10.1093/imrn/rnu122

OKINA : ua12558

Idioma(s)

en

Publicador

HAL CCSD

Oxford University Press (OUP)

Relação

info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnu122

Fonte

ISSN: 1073-7928

EISSN: 1687-0247

International Mathematics Research Notices

https://hal.archives-ouvertes.fr/hal-01392109

International Mathematics Research Notices, Oxford University Press (OUP), 2015, 2015 (15), pp.6211-6266. <http://imrn.oxfordjournals.org/content/2015/15/6211>. <10.1093/imrn/rnu122>

http://imrn.oxfordjournals.org/content/2015/15/6211

Palavras-Chave #[MATH] Mathematics [math]
Tipo

info:eu-repo/semantics/article

Journal articles