938 resultados para SOLAR ACTIVE-REGION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the optical properties of asymmetric multiple layer stacked self-assembled InAs quantum dot with different interlayer. We found that asymmetric multiple stacked QD samples with In0.2Ga0.8As + GaAs interlayer can afford a 180nm flat spectral width with strong PL intensity compared to other samples at room temperature. We think this result is due to the introduction of In0.2Ga0.8As strain-reducing layer. Additionally, for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for quantum-dot superluminescent diodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

980nm InGaAs/InGaAsP/AlGaAs strained quantum well lasers,vitta novel large optical cavity and asymmetrical claddings was fabricated bg MOCVD. Very high differential quantum efficiency elf 90% (1.15W/A) and low vertical divergence angle of 24 degrees at long cavity length were obtained for 100 mu m stripe lasers. The differential quantum efficiency is up to 94% (1.20) at cavity length of 500 mu m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microphotoluminescence (mu-PL) investigation has been performed at room temperature on InAs quantum dot (QD) vertical cavity surface emitting laser (VCSEL) structure in order to characterize the QD epitaxial structure which was designed for 1.3 mu m wave band emission. Actual and precise QD emission spectra including distinct ground state (GS) and excited state (ES) transition peaks are obtained by an edge-excitation and edge-emission (EEEE) mu-PL configuration. Conventional photoluminescence methods for QD-VCSELs structure analysis are compared and discussed, which indicate the EEEE mu-PL is a useful tool to determine the optical features of the QD active region in an as-grown VCSEL structure. Some experimental results have been compared with simulation results obtained with the aid of the plane-wave admittance method. After adjustment of epitaxial growth according to EEEE mu-PL measurement results, QD-VCSEL structure wafer with QD GS transition wavelength of 1300 nm and lasing wavelength of 1301 nm was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A broadly tunable and high-power grating-coupled external cavity laser with a tuning range of more than 200 nm and a similar to 200-mW maximum output power was realized, by utilizing a gain device with the chirped multiple quantum-dot (QD) active layers and bent waveguide structure. The chirped QD active medium, which consists of QD layers with InGaAs strain-reducing layers different in thickness, is beneficial to the broadening of the material gain spectrum. The bent waveguide structure and facet antireflection coating are both effective for the suppression of inner-cavity lasing under large injection current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(2)-2s2p(3) transitions in Si IX between 223 and 350 Angstrom are presented. A comparison of these with an extensive dataset of solar-active-region, quiet-Sun, subflare and off-limb observations, obtained during rocket flights by the Solar EUV Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and experiment. This provides support for the accuracy of the line- ratio diagnostics, and hence the atomic data on which they are based. In particular, the density-sensitive intensity ratio I (258.10 Angstrom)/ I (349.87 Angstrom) offers an especially promising diagnostic for studies of coronal plasmas, as it involves two reasonably strong emission lines and varies by more than an order of magnitude over the useful density range of 10(9)-10(11) cm(-3). The 2s(2)2p(2) S-1(0) - 2s2p(3) P-1(1) transition at 259.77 Angstrom is very marginally identified for the first time in the SERTS database, although it has previously been detected in solar flare observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical emission-line ratios involving transitions in the 236-412 Angstrom wavelength range are presented for the Na-like ions Ar viii, Cr xiv, Mn xv, Fe xvi, Co xvii, Ni xviii and Zn xx. A comparison of these with an extensive data set of the solar active region, quiet-Sun, subflare and off-limb observations, obtained during rocket flights by the Solar EUV Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and experiment. This indicates that most of the Na-like ion lines are reliably detected in the SERTS observations, and hence may be employed with confidence in solar spectral analyses. However, the features in the SERTS spectra at 236.34 and 300.25 Angstrom, originally identified as the Ni xviii 3p (2) P-3/2 -3d (2) D- 3/2 and Cr xiv 3p (2) P-3/2 -3d (2) D-5/2 transitions, respectively, are found to be due to emission lines of Ar xiii (236.34 Angstrom) and possibly S v or Ni vi (300.25 Angstrom). The Co xvii 3s (2) S-3p (2) P-3/2 line at 312.55 Angstrom is always badly blended with an Fe xv feature at the same wavelength, but Mn xv 3s (2) S-3p (2) P-1/2 at 384.75 Angstrom may not always be as affected by second-order emission from Fe xii 192.37 Angstrom as previously thought. On the other hand, we find that the Zn xx 3s (2) S-3p (2) P-3/2 transition can sometimes make a significant contribution to the Zn xx/Fe xiii 256.43- Angstrom blend, and hence care must be taken when using this feature as an Fe xiii electron density diagnostic. A line in the SERTS-89 active region spectrum at 265.00 Angstrom has been re-assessed, and we confirm its identification as the Fe xvi 3p (2) P-3/2 -3d (2) D-3/2 transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide receptor (GIPR), a member of family B of the G-protein coupled receptors, is a potential therapeutic target for which discovery of nonpeptide ligands is highly desirable. Structure-activity relationship studies indicated that the N-terminal part of glucose-dependent insulinotropic polypeptide (GIP) is crucial for biological activity. Here, we aimed at identification of residues in the GIPR involved in functional interaction with N-terminal moiety of GIP. A homology model of the transmembrane core of GIPR was constructed, whereas a three-dimensional model of the complex formed between GIP and the N-terminal extracellular domain of GIPR was taken from the crystal structure. The latter complex was docked to the transmembrane domains of GIPR, allowing in silico identification of putative residues of the agonist binding/activation site. All mutants were expressed at the surface of human embryonic kidney 293 cells as indicated by flow cytometry and confocal microscopy analysis of fluorescent GIP binding. Mutation of residues Arg183, Arg190, Arg300, and Phe357 caused shifts of 76-, 71-, 42-, and 16-fold in the potency to induce cAMP formation, respectively. Further characterization of these mutants, including tests with alanine-substituted GIP analogs, were in agreement with interaction of Glu3 in GIP with Arg183 in GIPR. Furthermore, they strongly supported a binding mode of GIP to GIPR in which the N-terminal moiety of GIP was sited within transmembrane helices (TMH) 2, 3, 5, and 6 with biologically crucial Tyr1 interacting with Gln224 (TMH3), Arg300 (TMH5), and Phe357 (TMH6). These data represent an important step toward understanding activation of GIPR by GIP, which should facilitate the rational design of therapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. High temporal and spatial resolution observations from the Rapid Oscillations in the Solar Atmosphere (ROSA) multiwavelength imager on the Dunn Solar Telescope are used to study the velocities of small-scale Hα jets in an emerging solar active region.
Methods. The dataset comprises simultaneous imaging in the Hα core, Ca ii K, and G band, together with photospheric line-of-sight magnetograms. Time-distance techniques are employed to determine projected plane-of-sky velocities.
Results. The Hα images are highly dynamic in nature, with estimated jet velocities as high as 45 km s-1. These jets are one-directional, with their origin seemingly linked to underlying Ca ii K brightenings and G-band magnetic bright points.
Conclusions. It is suggested that the siphon flow model of cool coronal loops is suitable for interpreting our observations. The jets are associated with small-scale explosive events, and may provide a mass outflow from the photosphere to the corona.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a significant increase in the gain and front-to-back ratio is obtained when different high impedance surface (HIS) sections are placed below the active regions of an Archimedean spiral antenna. The principle of operation is demonstrated at 3, 6, and 9 GHz for an antenna design that employs a ground plane composed of two dissimilar HISs. The unit cells of the HISs are collocated and resonant at the same frequency as the 3- and 6-GHz active regions of the wideband spiral. It is shown that the former HIS must also be designed to resonate at 9 GHz to avoid the generation of a boresight null that occurs because the structure is physically large enough to support higher-order modes. The improvement that is obtained at each of the three frequencies investigated is shown by comparing the predicted and measured radiation patterns for the free space and HIS-backed antenna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We study the formation and evolution of a failed filament eruption observed in NOAA active region 11121 near the southeast
limb on November 6, 2010.
Methods. We used a time series of SDO/AIA 304, 171, 131, 193, 335, and 94 Å images, SDO/HMI magnetograms, as well as ROSA
and ISOON Hα images to study the erupting active region.
Results. We identify coronal loop arcades associated with a quadrupolar magnetic configuration, and show that the expansion and
cancellation of the central loop arcade system over the filament is followed by the eruption of the filament. The erupting filament
reveals a clear helical twist and develops the same sign of writhe in the form of inverse γ-shape.
Conclusions. The observations support the “magnetic breakout” process in which the eruption is triggered by quadrupolar reconnection
in the corona. We propose that the formation mechanism of the inverse γ-shape flux rope is the magnetohydrodynamic helical
kink instability. The eruption has failed because of the large-scale, closed, overlying magnetic loop arcade that encloses the active
region

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the "warm" contributions to the emission. HMI/SDO data allow us to focus on "inter-moss" regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min–1 and 0.7 min–1. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D "hybrid" shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’utilisation d’une méthode d’assimilation de données, associée à un modèle de convection anélastique, nous permet la reconstruction des structures physiques d’une partie de la zone convective située en dessous d’une région solaire active. Les résultats obtenus nous informent sur les processus d’émergence des tubes de champ magnétique au travers de la zone convective ainsi que sur les mécanismes de formation des régions actives. Les données solaires utilisées proviennent de l’instrument MDI à bord de l’observatoire spatial SOHO et concernent principalement la région active AR9077 lors de l’ ́évènement du “jour de la Bastille”, le 14 juillet 2000. Cet évènement a conduit à l’avènement d’une éruption solaire, suivie par une importante éjection de masse coronale. Les données assimilées (magnétogrammes, cartes de températures et de vitesses verticales) couvrent une surface de 175 méga-mètres de coté acquises au niveau photosphérique. La méthode d’assimilation de données employée est le “coup de coude direct et rétrograde”, une méthode de relaxation Newtonienne similaire à la méthode “quasi-linéaire inverse 3D”. Elle présente l’originalité de ne pas nécessiter le calcul des équations adjointes au modèle physique. Aussi, la simplicité de la méthode est un avantage numérique conséquent. Notre étude montre au travers d’un test simple l’applicabilité de cette méthode à un modèle de convection utilisé dans le cadre de l’approximation anélastique. Nous montrons ainsi l’efficacité de cette méthode et révélons son potentiel pour l’assimilation de données solaires. Afin d’assurer l’unicité mathématique de la solution obtenue nous imposons une régularisation dans tout le domaine simulé. Nous montrons enfin que l’intérêt de la méthode employée ne se limite pas à la reconstruction des structures convectives, mais qu’elle permet également l’interpolation optimale des magnétogrammes photosphériques, voir même la prédiction de leur évolution temporelle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of an X-class flare that occurred on 11 June 2014 in active region NOAA 12087 using a newly developed high cadence Image
Selector operated by Astronomical Institute in Ondrejov, Czech Republic. This instrument provides spectra in the 350 - 440 nm wavelength range, which
covers the higher order Balmer lines as well as the Balmer jump at 364 nm. However, no detectable increase in these emissions were detected during
the flare, and support observations from SDO/EVE MEGS-B also show that the Lyman line series and recombination continuum were also suppressed,
particularly when compared to an M-class flare that occurred an hour earlier, and two other X-class flares on the preceding day. The X-class flare under
investigation also showed strong white light emission in SDO/HMI data, as well as an extremely hard electron spectrum ( 3.6), and
-ray emission,
from RHESSI data. This unique combination of datasets allows us to conclude that the white light emission from this flare corresponds to a black body
heated by high-energy electrons (and/or ions), as opposed to optical chromospheric emission from hydrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates in N-like Si VIII are used to derive theoretical emission line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 216 -320 Angstrom wavelength range. A comparison of these with an extensive dataset of solar active region, quiet- Sun, sub-flare and off-limb observations, obtained during rocket flights of the Solar EUV Research Telescope and Spectrograph (SERTS), indicates that the ratio R-1 = I(216.94 Angstrom)/I(319.84 Angstrom) may provide a usable electron density diagnostic for coronal plasmas. The ratio involves two lines of comparable intensity, and varies by a factor of about 5 over the useful density range of 10(8)-10(11) cm(-3). However R-2 = I(276.85 Angstrom)/I(319.84 Angstrom) and R-3 = I(277.05 Angstrom)/I(319.84 Angstrom) show very poor agreement between theory and observation, due to the severe blending of the 276.85 and 277.05 Angstrom lines with Si VII and Mg VII transitions, respectively, making the ratios unsuitable as density diagnostics. The 314.35 Angstrom feature of Si VIII also appears to be blended, with the other species contributing around 20% to the total line flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-cadence, multiwavelength optical observations of a solar active region (NOAA AR 10969), obtained with the Swedish Solar Telescope, are presented. Difference imaging of white light continuum data reveals a white-light brightening, 2 minutes in duration, linked to a cotemporal and cospatial C2.0 flare event. The flare kernel observed in the white-light images has a diameter of 300 km, thus rendering it below the resolution limit of most space-based telescopes. Continuum emission is present only during the impulsive stage of the flare, with the effects of chromospheric emission subsequently delayed by approximate to 2 minutes. The localized flare emission peaks at 300% above the quiescent flux. This large, yet tightly confined, increase in emission is only resolvable due to the high spatial resolution of the Swedish Solar Telescope. An investigation of the line-of-sight magnetic field derived from simultaneous MDI data shows that the continuum brightening is located very close to a magnetic polarity inversion line. In addition, an Ha flare ribbon is directed along a region of rapid magnetic energy change, with the footpoints of the ribbon remaining cospatial with the observed white-light brightening throughout the duration of the flare. The observed flare parameters are compared with current observations and theoretical models for M- and X-class events and we determine the observed white-light emission is caused by radiative back-warming. We suggest that the creation of white-light emission is a common feature of all solar flares.