982 resultados para SECONDARY ORGANIC AEROSOL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semisolid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KMSUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submicron atmospheric particles in the Amazon Basin were characterized by a high-resolution aerosol mass spectrometer during the wet season of 2008. Patterns in the mass spectra closely resembled those of secondary-organic-aerosol (SOA) particles formed in environmental chambers from biogenic precursor gases. In contrast, mass spectral indicators of primary biological aerosol particles (PBAPs) were insignificant, suggesting that PBAPs contributed negligibly to the submicron fraction of particles during the period of study. For 40% of the measurement periods, the mass spectra indicate that in-Basin biogenic SOA production was the dominant source of the submicron mass fraction, contrasted to other periods (30%) during which out-of-Basin organic-carbon sources were significant on top of the baseline in-Basin processes. The in-Basin periods had an average organic-particle loading of 0.6 mu g m(-3) and an average elemental oxygen-to-carbon (O:C) ratio of 0.42, compared to 0.9 mu g m(-3) and 0.49, respectively, during periods of out-of-Basin influence. On the basis of the data, we conclude that most of the organic material composing submicron particles over the Basin derived from biogenic SOA production, a finding that is consistent with microscopy observations made in a concurrent study. This source was augmented during some periods by aged organic material delivered by long-range transport. Citation: Chen, Q., et al. (2009), Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophys. Res. Lett., 36, L20806, doi: 10.1029/2009GL039880.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), were measured from September to November 2002 at a pasture site in the Amazon Basin (Rondnia, Brazil) (LBA-SMOCC). Measurements were conducted using a semi-continuous technique (Wet-annular denuder/Steam-Jet Aerosol Collector: WAD/SJAC) and three integrating filter-based methods, namely (1) a denuder-filter pack (DFP: Teflon and impregnated Whatman filters), (2) a stacked-filter unit (SFU: polycarbonate filters), and (3) a High Volume dichotomous sampler (HiVol: quartz fiber filters). Measurements covered the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). Analyses of the particles collected on filters were performed using ion chromatography (IC) and Particle-Induced X-ray Emission spectrometry (PIXE). Season-dependent discrepancies were observed between the WAD/SJAC system and the filter-based samplers. During the dry season, when PM2.5 (D-p <= 2.5 mu m) concentrations were similar to 100 mu g m(-3), aerosol NH4+ and SO42- measured by the filter-based samplers were on average two times higher than those determined by the WAD/SJAC. Concentrations of aerosol NO3- and Cl- measured with the HiVol during daytime, and with the DFP during day- and nighttime also exceeded those of the WAD/SJAC by a factor of two. In contrast, aerosol NO3- and Cl- measured with the SFU during the dry season were nearly two times lower than those measured by the WAD/SJAC. These differences declined markedly during the transition period and towards the cleaner conditions during the onset of the wet season (PM2.5 similar to 5 mu g m(-3)); when filter-based samplers measured on average 40-90% less than the WAD/SJAC. The differences were not due to consistent systematic biases of the analytical techniques, but were apparently a result of prevailing environmental conditions and different sampling procedures. For the transition period and wet season, the significance of our results is reduced by a low number of data points. We argue that the observed differences are mainly attributable to (a) positive and negative filter sampling artifacts, (b) presence of organic compounds and organosulfates on filter substrates, and (c) a SJAC sampling efficiency of less than 100%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sekundäres organisches Aerosol (SOA) ist ein wichtiger Bestandteil von atmosphärischen Aerosolpartikeln. Atmosphärische Aerosole sind bedeutsam, da sie das Klima über direkte (Streuung und Absorption von Strahlung) und indirekte (Wolken-Kondensationskeime) Effekte beeinflussen. Nach bisherigen Schätzungen ist die SOA-Bildung aus biogenen Kohlenwasserstoffen global weit wichtiger als die SOA-Bildung aus anthropogenen Kohlenwasserstoffen. Reaktive Kohlenwasserstoffe, die in großen Mengen von der Vegetation emittiert werden und als die wichtigsten Vorläufersubstanzen für biogenes SOA gelten, sind die Terpene. In der vorliegenden Arbeit wurde eine Methode entwickelt, welche die Quantifizierung von aciden Produkten der Terpen-Oxidation ermöglicht. Die Abscheidung des größenselektierten Aerosols (PM 2.5) erfolgte auf Quarzfilter, die unter Zuhilfenahme von Ultraschall mittels Methanol extrahiert wurden. Nach Aufkonzentrierung und Lösungsmittelwechsel auf Wasser sowie Standardaddition wurden die Proben mit einer Kapillar-HPLC-ESI-MSn-Methode analysiert. Das verwendete Ionenfallen-Massenspektrometer (LCQ-DECA) bietet die Möglichkeit, Strukturaufklärung durch selektive Fragmentierung der Qasimolekülionen zu betreiben. Die Quantifizierung erfolgte teilweise im MS/MS-Modus, wodurch Selektivität und Nachweisgrenze verbessert werden konnten. Um Produkte der Terpen-Oxidation zu identifizieren, die nicht als Standards erhältlich waren, wurden Ozonolysexperimente durchgeführt. Dadurch gelang die Identifizierung einer Reihe von Oxidationsprodukten in Realproben. Neben schon bekannten Produkten der Terpen-Oxidation konnten einige Produkte erstmals in Realproben eindeutig als Produkte des α Pinens nachgewiesen werden. In den Proben der Ozonolyseexperimente konnten auch Produkte mit hohem Molekulargewicht (>300 u) nachgewiesen werden, die Ähnlichkeit zeigen zu den als Dimeren oder Polymeren in der Literatur bezeichneten Substanzen. Sie konnten jedoch nicht in Feldproben gefunden werden. Im Rahmen von 5 Messkampagnen in Deutschland und Finnland wurden Proben der atmosphärischen Partikelphase genommen. Die Quantifizierung von Produkten der Oxidation von α-Pinen, β-Pinen, 3-Caren, Sabinen und Limonen in diesen Proben ergab eine große zeitliche und örtliche Variationsbreite der Konzentrationen. Die Konzentration von Pinsäure bewegte sich beispielsweise zwischen etwa 0,4 und 21 ng/m³ während aller Messkampagnen. Es konnten stets Produkte verschiedener Terpene nachgewiesen werden. Produkte einiger Terpene eignen sich sogar als Markersubstanzen für verschiedene Pflanzenarten. Sabinen-Produkte wie Sabinsäure können als Marker für die Emissionen von Laubbäumen wie Buchen oder Birken verwendet werden, während Caren-Produkte wie Caronsäure als Marker für Nadelbäume, speziell Kiefern, verwendet werden können. Mit den quantifizierten Substanzen als Marker wurde unter zu Hilfenahme von Messungen des Gehaltes an organischem und elementarem Kohlenstoff im Aerosol der Anteil des sekundären organischen Aerosols (SOA) errechnet, der von der Ozonolyse der Terpene stammt. Erstaunlicherweise konnten nur 1% bis 8% des SOA auf die Ozonolyse der Terpene zurückgeführt werden. Dies steht im Gegensatz zu der bisherigen Meinung, dass die Ozonolyse der Terpene die wichtigste Quelle für biogenes SOA darstellt. Gründe für diese Diskrepanz werden in der Arbeit diskutiert. Um die atmosphärischen Prozesse der Bildung von SOA vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmosphärische Aerosole beeinflussen den Strahlungshaushalt und damit das Klima der Erde. Dies geschieht sowohl direkt (Streuung und Absorption), als auch indirekt (Wolkenkondensationskeime). Das sekundäre organische Aerosol (SOA) bildet einen wichtigen Bestandteil des atmosphärischen Aerosols. Seine Bildung erfolgt durch Reaktionen von Kohlenwasserstoffen mit atmosphärischen Oxidationsmitteln (z.B. Ozon, OH-Radikalen). Eine Klasse dieser Kohlenwasserstoffe sind die Terpene. Sie werden in großen Mengen durch die Vegetation emittiert und gelten als wichtige Vorläufersubstanzen des biogenen SOAs. In den Reaktionen von Monoterpenen und Sesquiterpenen mit atmosphärischen Reaktionspartnern wird eine große Vielfalt an multifunktionellen Reaktionsprodukten gebildet, von denen bis heute nur ein Bruchteil identifiziert werden konnte. In der vorliegenden Arbeit soll im Speziellen die Bildung von organischen Peroxiden und oligomeren Verbindungen im biogenen SOA untersucht und Nachweise einzelner Moleküle erbracht werden.rnFür eine Identifizierung von organischen Peroxiden aus der Oxidation einzelner Monoterpene und Sesquiterpene mit Ozon wurden die Reaktionsprodukte direkt in eine bei Atmosphärendruck arbeitende chemische Ionisationsquelle überführt und massenspektrometrisch untersucht (online-APCI-MS). Hierdurch konnten organische Hydroperoxide in der Partikelphase nachgewiesen werden, welche sich durch eine signifikante Abspaltung von H2O2 im Tandem-Massenspektrum (MS/MS) auszeichneten. Des Weiteren sollte die Bildung von höhermolekularen Verbindungen („Dimere“) im SOA des α-Pinens untersucht werden. Hierfür wurden zunächst die Reaktionsprodukte des Cyclohexens, das als einfache Modellverbindung des α-Pinens dient, mittels online-APCI-MS und offline durch Flüssigkeitschromatographie und Elektrospray-Ionenfallenmassenspektrometrie (HPLC/ESI-MS) untersucht. Verschiedene Produkte der Cyclohexen-Ozonolyse konnten hierbei als Esterverbindungen identifiziert werden, wobei eigens synthetisierte Referenzsubstanzen für die Identifizierung verwendet wurden. In einem weiteren Experiment, indem gleichzeitig Cyclohexen und α-Pinen mit Ozon umgesetzt wurden, konnten ebenfalls eine Bildung von höhermolekularen Estern nachgewiesen werden. Es handelte sich hierbei um „Mischester“, deren Struktur aus Reaktionsprodukten der beiden VOC-Vorläufermoleküle aufgebaut war. Durch diese neuen Erkenntnisse, über die Bildung von Estern im SOA des Cyclohexens, wurden die Dimer-Bildung einer reinen α-Pinen/Ozon-Reaktion online und offline massenspektrometrisch untersucht. Hier stellten sich als Hauptprodukte die Verbindungen mit m/z 357 und m/z 367 ([M-H]--Ionen) heraus, welche zudem erstmals auf einem Filter einer Realprobe aus Hyytiälä, Finnland nachgewiesen werden konnten. Aufgrund ihrer Fragmentierung in MS/MS-Untersuchungen sowie den exakten Summenformeln aus FT-MS Messungen konnte für die Struktur der höhermolekularen Verbindung mit m/z 367 ebenfalls ein Ester und für m/z 357 ein Peroxyhemiacetal vorgeschlagen werden. Die vorgeschlagene Struktur der Verbindung m/z 367 konnte im Anschluss über eine Reaktion aus Hydroxypinonsäure mit Pinsäure bestätigt werden. Die Identifizierung der Esterverbindung des α-Pinen-SOA erfolgte ebenfalls mit Hilfe von LC-MSn-Messungen.rnDie bisher diskutierten Ergebnisse, sowie die meisten in der Literatur beschriebenen Studien befassen sich jedoch mit einzelnen Vorläuferverbindungen, im Gegensatz zu den komplexen SOA-Proben aus den Emissionen der Vegetation. Im Rahmen einer Messkampagne am Forschungszentrum Jülich erfolgte eine massenspektrometrische Charakterisierung (online-APCI-MS) des SOAs aus direkten VOC-Emissionen von Pflanzen. Durch einen Vergleich der Produktverteilung dieser erhalten online-Massenspektren mit denen aus den Reaktionen einzelner VOCs, konnten Aussagen über die in den Reaktionen umgesetzten VOCs gemacht werden. Es konnte gezeigt werden, dass in stressbedingten Situationen die untersuchten Exemplare der Betula pendula (Birke) hauptsächlich Sesquiterpene, Picea abies (Fichte) eher Monoterpene und Eucalyptus (Eukalyptus) sowohl Sesquiterpene als auch Monoterpene emittieren. Um die atmosphärischen Prozesse, die zur Bildung der Produkte im SOA führen vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit präsentiert Forschungsergebnisse der beiden wissenschaftlichen Projekte POLYSOA und OOMPH. Für das POLYSOA-Projekt, welches sich mit der Oligomerbildung in sekundären organischen Aerosolen befasst, wurden zwei Dicarbonylverbindungen bezüglich ihres Oligomerisationsverhaltens untersucht. Hierfür wurden zunächst verschiedene Herstellungsmethoden für die reinen, wasserfreien Monomere Glyoxal (Ethandial) und Methylglyoxal (2-Oxopropanal) erprobt. Diese wurden mit Reinstwasser umgesetzt und die Reaktionsprodukte massenspektrometrisch mittels Direktinfusion in ein ESI-MS untersucht. Es wurde bei den wässrigen Lösungen von Glyoxal eine starke Tendenz zur Oligomerbildung beobachtet. Die Zusammensetzung dieser Acetal-Oligomere wurde durch MS2-Experimente analysiert. Methylglyoxal bildete bei den durchgeführten Experimenten ebenfalls bei der Reaktion mit Wasser Oligomere. Zum Ausschluss, dass es sich bei den mittels ESI-MS gemessenen Oligomer-Ionen nicht um Ionenquellenartefakte handelte, wurde eine HPLC-Trennung vorgenommen. Diese Experimente ergaben, dass es sich nicht um Artefakte handelt. Als Teil des OOMPH-Projekts wurden mit einem Aerodyne-HRToF-AMS Messungen an Bord des französischem Forschungsschiffes RV Marion Dufresne durchgeführt. Um detaillierte Informationen über die hierbei im organischen Aerosol enthaltenen Moleküle zu erhalten wurde eine neue Methode entwickelt. Es wurde eine Ionenliste erstellt, die mögliche Fragment-Ionen sowie deren exakte Masse enthält. Reihen von homologen Ionen wurden in Gruppen zusammengefasst. Ein selbstentwickelter Algorithmus berechnet die Signalanteile der einzelnen Ionen aus der Ionenliste am Gesamtsignal. Die erhaltenen einzelnen Signalanteile wurden entsprechend den Ionengruppen zusammengefasst. Hieraus können Informationen über die im Aerosol enthaltenen Molekülbausteine erhalten werden. Im OOMPH-Datensatz konnten so Aerosole verschiedener chemischer Zusammensetzung unterschieden werden. Ein Rückschluss auf einzelne Moleküle kann jedoch nicht gezogen werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ein wesentlicher Anteil an organischem Kohlenstoff, der in der Atmosphäre vorhanden ist, wird als leichtflüchtige organische Verbindungen gefunden. Diese werden überwiegend durch die Biosphäre freigesetzt. Solche biogenen Emissionen haben einen großen Einfluss auf die chemischen und physikalischen Eigenschaften der Atmosphäre, indem sie zur Bildung von bodennahem Ozon und sekundären organischen Aerosolen beitragen. Um die Bildung von bodennahem Ozon und von sekundären organischen Aerosolen besser zu verstehen, ist die technische Fähigkeit zur genauen Messung der Summe dieser flüchtigen organischen Substanzen notwendig. Häufig verwendete Methoden sind nur auf den Nachweis von spezifischen Nicht-Methan-Kohlenwasserstoffverbindungen fokussiert. Die Summe dieser Einzelverbindungen könnte gegebenenfalls aber nur eine Untergrenze an atmosphärischen organischen Kohlenstoffkonzentrationen darstellen, da die verfügbaren Methoden nicht in der Lage sind, alle organischen Verbindungen in der Atmosphäre zu analysieren. Einige Studien sind bekannt, die sich mit der Gesamtkohlenstoffbestimmung von Nicht-Methan-Kohlenwasserstoffverbindung in Luft beschäftigt haben, aber Messungen des gesamten organischen Nicht-Methan-Verbindungsaustauschs zwischen Vegetation und Atmosphäre fehlen. Daher untersuchten wir die Gesamtkohlenstoffbestimmung organische Nicht-Methan-Verbindungen aus biogenen Quellen. Die Bestimmung des organischen Gesamtkohlenstoffs wurde durch Sammeln und Anreichern dieser Verbindungen auf einem festen Adsorptionsmaterial realisiert. Dieser erste Schritt war notwendig, um die stabilen Gase CO, CO2 und CH4 von der organischen Kohlenstofffraktion zu trennen. Die organischen Verbindungen wurden thermisch desorbiert und zu CO2 oxidiert. Das aus der Oxidation entstandene CO2 wurde auf einer weiteren Anreicherungseinheit gesammelt und durch thermische Desorption und anschließende Detektion mit einem Infrarot-Gasanalysator analysiert. Als große Schwierigkeiten identifizierten wir (i) die Abtrennung von CO2 aus der Umgebungsluft von der organischen Kohlenstoffverbindungsfaktion während der Anreicherung sowie (ii) die Widerfindungsraten der verschiedenen Nicht-Methan-Kohlenwasserstoff-verbindungen vom Adsorptionsmaterial, (iii) die Wahl des Katalysators sowie (iiii) auftretende Interferenzen am Detektor des Gesamtkohlenstoffanalysators. Die Wahl eines Pt-Rd Drahts als Katalysator führte zu einem bedeutenden Fortschritt in Bezug auf die korrekte Ermittlung des CO2-Hintergrund-Signals. Dies war notwendig, da CO2 auch in geringen Mengen auf der Adsorptionseinheit während der Anreicherung der leichtflüchtigen organischen Substanzen gesammelt wurde. Katalytische Materialien mit hohen Oberflächen stellten sich als unbrauchbar für diese Anwendung heraus, weil trotz hoher Temperaturen eine CO2-Aufnahme und eine spätere Abgabe durch das Katalysatormaterial beobachtet werden konnte. Die Methode wurde mit verschiedenen leichtflüchtigen organischen Einzelsubstanzen sowie in zwei Pflanzenkammer-Experimenten mit einer Auswahl an VOC-Spezies getestet, die von unterschiedlichen Pflanzen emittiert wurden. Die Pflanzenkammer-messungen wurden durch GC-MS und PTR-MS Messungen begleitet. Außerdem wurden Kalibrationstests mit verschiedenen Einzelsubstanzen aus Permeations-/Diffusionsquellen durchgeführt. Der Gesamtkohlenstoffanalysator konnte den tageszeitlichen Verlauf der Pflanzenemissionen bestätigen. Allerdings konnten Abweichungen für die Mischungsverhältnisse des organischen Gesamtkohlenstoffs von bis zu 50% im Vergleich zu den begleitenden Standardmethoden beobachtet werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol particles are strongly related to climate, air quality, visibility and human health issues. They contribute the largest uncertainty in the assessment of the Earth´s radiative budget, directly by scattering or absorbing solar radiation or indirectly by nucleating cloud droplets. The influence of aerosol particles on cloud related climatic effects essentially depends upon their number concentration, size and chemical composition. A major part of submicron aerosol consists of secondary organic aerosol (SOA) that is formed in the atmosphere by the oxidation of volatile organic compounds. SOA can comprise a highly diverse spectrum of compounds that undergo continuous chemical transformations in the atmosphere.rnThe aim of this work was to obtain insights into the complexity of ambient SOA by the application of advanced mass spectrometric techniques. Therefore, an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) was applied in the field, facilitating the measurement of ions of the intact molecular organic species. Furthermore, the high measurement frequency provided insights into SOA composition and chemical transformation processes on a high temporal resolution. Within different comprehensive field campaigns, online measurements of particular biogenic organic acids were achieved by combining an online aerosol concentrator with the APCI-IT-MS. A holistic picture of the ambient organic aerosol was obtained through the co-located application of other complementary MS techniques, such as aerosol mass spectrometry (AMS) or filter sampling for the analysis by liquid chromatography / ultrahigh resolution mass spectrometry (LC/UHRMS).rnIn particular, during a summertime field study at the pristine boreal forest station in Hyytiälä, Finland, the partitioning of organic acids between gas and particle phase was quantified, based on the online APCI-IT-MS and AMS measurements. It was found that low volatile compounds reside to a large extent in the gas phase. This observation can be interpreted as a consequence of large aerosol equilibration timescales, which build up due to the continuous production of low volatile compounds in the gas phase and/or a semi-solid phase state of the ambient aerosol. Furthermore, in-situ structural informations of particular compounds were achieved by using the MS/MS mode of the ion trap. The comparison to MS/MS spectra from laboratory generated SOA of specific monoterpene precursors indicated that laboratory SOA barely depicts the complexity of ambient SOA. Moreover, it was shown that the mass spectra of the laboratory SOA more closely resemble the ambient gas phase composition, indicating that the oxidation state of the ambient organic compounds in the particle phase is underestimated by the comparison to laboratory ozonolysis. These observations suggest that the micro-scale processes, such as the chemistry of aerosol aging or the gas-to-particle partitioning, need to be better understood in order to predict SOA concentrations more reliably.rnDuring a field study at the Mt. Kleiner Feldberg, Germany, a slightly different aerosol concentrator / APCI-IT-MS setup made the online analysis of new particle formation possible. During a particular nucleation event, the online mass spectra indicated that organic compounds of approximately 300 Da are main constituents of the bulk aerosol during ambient new particle formation. Co-located filter analysis by LC/UHRMS analysis supported these findings and furthermore allowed to determine the molecular formulas of the involved organic compounds. The unambiguous identification of several oxidized C 15 compounds indicated that oxidation products of sesquiterpenes can be important compounds for the initial formation and subsequent growth of atmospheric nanoparticles.rnThe LC/UHRMS analysis furthermore revealed that considerable amounts of organosulfates and nitrooxy organosulfates were detected on the filter samples. Indeed, it was found that several nitrooxy organosulfate related APCI-IT-MS mass traces were simultaneously enhanced. Concurrent particle phase ion chromatography and AMS measurements indicated a strong bias between inorganic sulfate and total sulfate concentrations, supporting the assumption that substantial amounts of sulfate was bonded to organic molecules.rnFinally, the comprehensive chemical analysis of the aerosol composition was compared to the hygroscopicity parameter kappa, which was derived from cloud condensation nuclei (CCN) measurements. Simultaneously, organic aerosol aging was observed by the evolution of a ratio between a second and a first generation biogenic oxidation product. It was found that this aging proxy positively correlates with increasing hygroscopicity. Moreover, it was observed that the bonding of sulfate to organic molecules leads to a significant reduction of kappa, compared to an internal mixture of the same mass fractions of purely inorganic sulfate and organic molecules. Concluding, it has been shown within this thesis that the application of modern mass spectrometric techniques allows for detailed insights into chemical and physico-chemical processes of atmospheric aerosols.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R-2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA(2)-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions. Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R-2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA(2)-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions.