883 resultados para Pulmonary emphysema
Resumo:
Oxygen-sensitive 3He-MRI was studied for the detection of differences in intrapulmonary oxygen partial pressure (pO2) between patients with normal lung transplants and those with bronchiolitis obliterans syndrome (BOS). Using software developed in-house, oxygen-sensitive 3He-MRI datasets from patients with normal lung grafts (n = 8) and with BOS (n = 6) were evaluated quantitatively. Datasets were acqiured on a 1.5-T system using a spoiled gradient echo pulse sequence. Underlying diseases were pulmonary emphysema (n = 10 datasets) and fibrosis (n = 4). BOS status was verified by pulmonary function tests. Additionally, 3He-MRI was assessed blindedly for ventilation defects. Median intrapulmonary pO2 in patients with normal lung grafts was 146 mbar compared with 108 mbar in patients with BOS. Homogeneity of pO2 distribution was greater in normal grafts (standard deviation pO2 34 versus 43 mbar). Median oxygen decrease rate during breath hold was higher in unaffected patients (-1.75 mbar/s versus -0.38 mbar/s). Normal grafts showed fewer ventilation defects (5% versus 28%, medians). Oxygen-sensitive 3He-MRI appears capable of demonstrating differences of intrapulmonary pO2 between normal lung grafts and grafts affected by BOS. Oxygen-sensitive 3He-MRI may add helpful regional information to other diagnostic techniques for the assessment and follow-up of lung transplant recipients.
Resumo:
OBJECTIVE To investigate frequent findings in cases of fatal opioid intoxication in whole-body post-mortem computed tomography (PMCT). METHODS PMCT of 55 cases in which heroin and/or methadone had been found responsible for death were retrospectively evaluated (study group), and were compared with PMCT images of an age- and sex-matched control group. Imaging results were compared with conventional autopsy. RESULTS The most common findings in the study group were: pulmonary oedema (95 %), aspiration (66 %), distended urinary bladder (42 %), cerebral oedema (49 %), pulmonary emphysema (38 %) and fatty liver disease (36 %). These PMCT findings occurred significantly more often in the study group than in the control group (p < 0.05). The combination of lung oedema, brain oedema and distended urinary bladder was seen in 26 % of the cases in the study group but never in the control group (0 %). This triad, as indicator of opioid-related deaths, had a specificity of 100 %, as confirmed by autopsy and toxicological analysis. CONCLUSIONS Frequent findings in cases of fatal opioid intoxication were demonstrated. The triad of brain oedema, lung oedema and a distended urinary bladder on PMCT was highly specific for drug-associated cases of death. KEY POINTS Frequent findings in cases of fatal opioid intoxication were investigated. Lung oedema, brain oedema and full urinary bladder represent a highly specific constellation. This combination of findings in post-mortem CT should raise suspicion of intoxication.
Resumo:
Introdução: Demonstramos previamente que em modelo experimental de enfisema pulmonar induzido por instilação de elastase, o inibidor de serinoprotease rBmTI-A promoveu a melhora da destruição tecidual em camundongos. Considerando que o tabagismo é o principal fator de risco para o desenvolvimento da Doença Pulmonar Obstrutiva Crônica (DPOC) e que o modelo de exposição à fumaça de cigarro é considerado o que melhor mimetiza esta doença em humanos, este estudo teve por objetivo verificar a ação do inibidor para serinoproteases rBmTI-A sobre os processos fisiopatológicos envolvidos no desenvolvimento do enfisema pulmonar, em modelo de exposição ao tabaco. Métodos: Para a indução do enfisema pulmonar, os animais foram expostos à fumaça de cigarro (duas vezes ao dia/ 30 minutos/ 5 dias por semana/ durante 12 semanas), e os animais controle permaneceram expostos ao ar ambiente. Dois protocolos de tratamento com o inibidor rBmTI-A foram realizados. No primeiro, os animais receberam duas administrações do inibidor rBmTI-A ou de seu veículo (Solução Salina 0,9%) por via intranasal, sendo a primeira após 24h do término das exposições ao cigarro e outra, 7 dias após à primeira instilação do inibidor. No segundo protocolo, os animais receberam 3 administrações do inibidor rBmTI-A, durante o tempo de exposição (1ª dose: 24h antes do início da exposição à fumaça de cigarro; 2ª dose: um mês após o início da exposição; 3ª dose: dois meses após o início). Após o término dos protocolos de exposição e tratamento, os animais foram submetidos aos procedimentos para coleta dos dados de mecânica respiratória e avaliação do Intercepto Linear Médio (Lm). Para o segundo protocolo, realizamos também as medidas para quantificação de fibras de colágeno e elástica, da densidade de células positivas para MAC-2, MMP-12 e 9, TIMP-1, Gp91phox e TNFalfa; no parênquima através de imunohistoquímica, contagem de células polimorfonucleares além da expressão gênica de MMP-12 e 9 no pulmão através de RT-qPCR. Resultados e Discussão: O tratamento com o inibidor para serinoprotease rBmTI-A atenuou o desenvolvimento do enfisema pulmonar apenas no segundo protocolo, quando foi administrado durante a exposição à fumaça de cigarro. Embora os grupos Fumo-rBmTIA e Fumo-VE apresentem aumento de Lm comparados aos grupos controles, houve uma redução deste índice no grupo Fumo-rBmTIA comparado ao grupo Fumo-VE. O mesmo comportamento foi observado para as análises de proporção em volume de fibras de elástica e colágeno no parênquima. Além disto, observamos aumento de macrófagos, MMP-12, MMP-9 e TNFalfa; nos grupos expostos à fumaça de cigarro, mas o tratamento com o inibidor rBmTI-A diminuiu apenas a quantidade de células positivas para MMP-12. Na avaliação da expressão gênica para MMP-12 e 9, não observamos diferença entre os grupos experimentais e o mesmo comportamento foi observado para a quantidade de células polimorfonucleares no parênquima. Além disso, observamos aumento de GP91phox e TIMP-1 nos grupos tratados com rBmTIA. Conclusões: Tais resultados sugerem que o inibidor rBmTI-A não foi efetivo como tratamento da lesão após a doença instalada. Entretanto, atenuou o desenvolvimento da doença quando administrado durante a indução do enfisema, possivelmente através do aumento de GP91phox e TIMP-1, acompanhados pela diminuição de MMP-12.
Resumo:
BACKGROUND: Evidence suggests that both the migration and activation of neutrophils into the airway is of importance in pathological conditions such as pulmonary emphysema. In the present study, we describe in vivo models of lung neutrophil infiltration and activation in mice and hamsters. RESULTS: BALB/c and C57BL/6 mice were intranasally treated with lipopolysaccharide (0.3 mg/kg). Twenty-four hours after, animals were treated intranasally with N-Formyl-Met-Leu-Phe (0 to 5 mg/kg). Golden Syrian hamsters were treated intratracheally with 0.5 mg/kg of lipopolysaccharide. Twenty-four hours after, animals were treated intratracheally with 0.25 mg/kg of N-Formyl-Met-Leu-Phe. Both mice and hamster were sacrificed two hours after the N-Formyl-Met-Leu-Phe application. In both BALB/c and C57BL/6 mice, a neutrophil infiltration was observed after the sequential application of lipopolysaccharide and N-Formyl-Met-Leu-Phe. However, 5 times less neutrophil was found in C57BL/6 mice when compared to BALB/c mice. This was reflected in the neutrophil activation parameters measured (myeloperoxidase and elastase activities). Despite the presence of neutrophil and their activation status, no lung haemorrhage could be detected in both strains of mice. When compared with mice, the lung inflammation induced by the sequential application of lipopolysaccharide and N-Formyl-Met-Leu-Phe was much greater in the hamster. In parallel with this lung inflammation, a significant lung haemorrhage was also observed. CONCLUSIONS: Both mouse and hamster can be used for pharmacological studies of new drugs or other therapeutics agents that aimed to interfere with neutrophil activation. However, only the hamster model seems to be suitable for studying the haemorrhagic lung injury process
Resumo:
Obtaining a semi-automatic quantification of pathologies found in the lung, through images of high resolution computed tomography (HRCT), is of great importance to aid in medical diagnosis. Paraccocidioidomycosis (PCM) is a systemic disease that affects the lung and even after effective treatment leaves sequels such as pulmonary fibrosis and emphysema. It is very important to the area of tropical diseases that the lung injury be quantified more accurately. In this stud, we propose the development of algorithms in computational environment Matlab® able to objectively quantify lung diseases such as fibrosis and emphysema. The program consists in selecting the region of interest (ROI), and through the use of density masks and filters, obtaining the lesion area quantification in relation to the healthy area of the lung. The proposed method was tested on 15 exams of HRCT of patients with confirmed PCM. To prove the validity and effectiveness of the method, we used a virtual phantom, also developed in this research. © 2013 Springer-Verlag.
Resumo:
Emphysema is caused by exposure to cigarette smoking as well as alpha1-antitrypsin deficiency. It has been estimated to cost the National Health Service (NHS) in excess of £800 million per year in related health care costs. The challenges for Critical Care nurses are those associated with dynamic hyperinflation, Auto-PEEP, malnutrition and the weaning from invasive and non-invasive mechanical ventilation. In this paper we consider the impact of the pathophysiology of emphysema, its effects on other body systems as well as the impact acute exacerbations have when patients are admitted to the Intensive Care Unit.
Resumo:
The Chronic Obstructive Pulmonary Disease (COPD) has a progressive and irreversible character and it’s associated to the triad of dyspnea, exercise limitation and the evident deterioration of quality of life. In the United States the prevalence of COPD in adult population is approximately of 6% in men, and 1 to 3% in women and it’s the fourth cause of mortality by no transmissible chronic diseases. In 1993, the National Health Interview Surgery considered that 12 millions of Americans suffer from chronic bronchitis and 2 million had emphysema. These two affections are responsible for more than 13% of the hospitalizations. As this affection progresses, patients experience a diminution in quality of life related to health (CVRS), their capacity to work get worse and their participation in physical and social activities reduces. Nevertheless, it has been confirmed that the isolated evaluation of COPD seriousness, defined by the reduction of the Forced Expiratory Volume in the First Second (FEV1), does not provide enough information to know the health state perceived by the patients. The fact that the CVRS is the result of the interaction of multiple physical, psychological and social factors, unique for each individual, can explain this finding. This paper is a general and updated approach to the integral handling of patients with COPD, and it discusses the concept of quality of life, related to health improvement.
Resumo:
Objectives: We investigated effects of chronic exposure (2 months) to ambient levels of particulate matter (PM) on development of protease-induced emphysema and pulmonary remodeling in mice. Methods: Balb/c mice received nasal drop of either papain or normal saline and were kept in two exposure chambers situated in an area with high traffic density. One of them received ambient air and the other had filters for PM. Results: mean concentration of PM10 was 2.68 +/- 0.38 and 33.86 +/- 2.09 mu g/m(3), respectively, in the filtered and ambient air chambers (p<0.001). After 2 months of exposure, lungs from papain-treated mice kept in the chamber with ambient air presented greater values of mean linear intercept, an increase in density of collagen fibers in alveolar septa and in expression of 8-isoprostane (p = 0.002, p < 0.05 and p = 0.002, respectively, compared to papain-treated mice kept in the chamber with filtered air). We did not observe significant differences between these two groups in density of macrophages and in amount of cells expressing matrix metalloproteinase-12. There were no significant differences in saline-treated mice kept in the two chambers. Conclusions: We conclude that exposure to urban levels of PM worsens protease-induced emphysema and increases pulmonary remodeling. We suggest that an increase in oxidative stress induced by PM exposure influences this response. These pulmonary effects of PM were observed only in mice with emphysema. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The effects and susceptibility of donkeys to Crotalaria juncea and Crotalaria retusa poisoning were determined at high and low doses. Seeds of C. juncea containing 0.074% of dehydropyrrolizidine alkaloids (DHPAs) (isohemijunceines 0.05%, trichodesmine 0.016%, and junceine 0.008%) were administered to three donkeys at 0.3, 0.6 and 1g/kg body weight (g/kg) daily for 365 days. No clinical signs were observed and, on liver and lung biopsies, the only lesion was a mild liver megalocytosis in the donkeys ingesting 0.6 and 1g/kg/day. Two other donkeys that received daily doses of 3 and 5g seed/kg showed initial respiratory signs 70 and 40 days after the start of the administration, respectively. The donkeys were euthanized following severe respiratory signs and the main lung lesions were proliferation of Clara cells and interstitial fibrosis. Three donkeys ingested seeds of C. retusa containing 5.99% of monocrotaline at daily doses of 0.025, 0.05 and 0.1g/kg for 365 days. No clinical signs were observed and, on liver and lung biopsies, the only lesion was moderate liver megalocytosis in each of the three donkeys. One donkey that received a single dose of 5g/kg of C. retusa seeds and another that received 1g/kg daily for 7 days both showed severe clinical signs and died with diffuse centrilobular liver necrosis. No lung lesions were observed. Another donkey that received a single dose of 2.5g/kg of C. retusa seeds showed no clinical signs. The hepatic and pneumotoxic effects observed are consistent with an etiology involving DHPAs. Furthermore, the occurrence of lung or liver lesions correlates with the type of DHPAs contained in the seeds. Similarly as has been reported for horses, the data herein suggest that in donkeys some DHPAs are metabolized in the liver causing liver disease, whereas others are metabolized in the lung by Clara cells causing lung disease. © 2013 Elsevier Ltd.
Resumo:
Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
Resumo:
Chronic Obstructive Pulmonary Disease (COPD) can be briefly described as air flow limitation and chronic dyspnea associated to an inflammatory response of the respiratory tract to noxious particles and gases. Its main feature is the obstruction of airflow and consequent chronic dyspnea. Despite recent advances, and the development of new therapeutic, medical and clinical approaches, a curative therapy is yet to be achieved. Therapies involving the use of tissue-specific or donor derived cells present a promising alternative in the treatment of degenerative diseases and injuries. Recent studies demonstrate that mesenchymal stem cells have the capacity to modulate immune responses in acute lung injury and pulmonary fibrosis in animal models, as well as in human patients. Due to these aspects, different groups raised the possibility that the stem cells from different sources, such as those found in bone marrow or adipose tissue, could act preventing the emphysematous lesion progression. In this paper, it is proposed a review of the current state of the art and future perspectives on the use of cell therapy in obstructive lung diseases.
Resumo:
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood. The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure. Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP) 1, interleukin (IL)-10 and 8-isoprostane in alveolar walls. Exercise attenuated the decrease in pulmonary elastance (p<0.01) and the increase in mean linear intercept (p=0.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase. Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.
Resumo:
Yamaguti WP, Claudino RC, Neto AP, Chammas MC, Gomes AC, Salge TM, Moriya HT, Cukier A, Carvalho CR. Diaphragmatic breathing training program improves abdominal motion during natural breathing in patients with chronic obstructive pulmonary disease: a randomized controlled trial. Arch Phys Med Rehabil 2012;93:571-7. Objective: To investigate the effects of a diaphragmatic breathing training program (DBTP) on thoracoabdominal motion and functional capacity in patients with chronic obstructive pulmonary disease. Design: A prospective, randomized controlled trial. Setting: Academic medical center. Participants: Subjects (N=30; forced expiratory volume in Is, 4270 +/- 13% predicted) were randomly allocated to either a training group (TG) or a control group (CG). Interventions: Subjects in the TG completed a 4-week supervised DBTP (3 individualized weekly sessions), while those in the CG received their usual care. Main Outcome Measures: Effectiveness was assessed by amplitude of the rib cage to abdominal motion ratio (RC/ABD ratio) (primary outcome) and diaphragmatic mobility (secondary outcome). The RC/ABD ratio was measured using respiratory inductive plethysmography during voluntary diaphragmatic breathing and natural breathing. Diaphragmatic mobility was measured by ultrasonography. A 6-minute walk test and health-related quality of life were also evaluated. Results: Immediately after the 4-week DBTP, the TG showed a greater abdominal motion during natural breathing quantified by a reduction in the RC/ABD ratio when compared with the CG (F=8.66; P<.001). Abdominal motion during voluntary diaphragmatic breathing after the intervention was also greater in the TG than in the CG (F=4.11; P<.05). The TG showed greater diaphragmatic mobility after the 4-week DBTP than did the CG (F=15.08; P<.001). An improvement in the 6-minute walk test and in health-related quality of life was also observed in the TG. Conclusions: DBTP for patients with chronic obstructive pulmonary disease induced increased diaphragm participation during natural breathing, resulting in an improvement in functional capacity.
Resumo:
Postmortem imaging has gained prominence in the field of forensic pathology. Even with experience in this procedure, difficulties arise in evaluating pathologies of the postmortem lung. The effect of postmortem ventilation with applied pressures of 10, 20, 30 and 40mbar was evaluated in 10 corpses using simultaneous postmortem computed tomography (pmCT) scans. Ventilation was performed via a continuous positive airway pressure mask (n=5), an endotracheal tube (n=4) and a laryngeal mask (n=1) using a portable home care ventilator. The lung volumes were measured and evaluated by a segmentation technique based on reconstructed CT data. The resulting changes to the lungs were analyzed. Postmortem ventilation at 40mbar induced a significant (p<0.05) unfolding of the lungs, with a mean volume increase of 1.32l. Small pathologies of the lung such as scarring and pulmonary nodules as well as emphysema were revealed, while inner livores were reduced. Even though lower ventilation pressures resulted in a significant (p<0.05) volume increase, pathologies were best evaluated when a pressure of 40mbar was applied, due to the greater reduction of the inner livores. With the ventilation-induced expansion of the lungs, a decrease in the heart diameter and gaseous distension of the stomach was recognized. In conclusion, postmortem ventilation is a feasible method for improving evaluation of the lungs and detection of small lung pathologies. This is because of the volume increase in the air-filled portions of the lung and reduced appearance of inner livores.