982 resultados para PIECEWISE VECTOR FIELDS
Resumo:
This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp.
Resumo:
We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.
Resumo:
We present a "boundary version" for theorems about minimality of volume and energy functionals on a spherical domain of an odd-dimensional Euclidean sphere.
Resumo:
In questo lavoro ci si propone di studiare la quantizzazione del campo vettoriale, massivo e non massivo, in uno spazio-tempo di Rindler, considerando in particolare i gauge di Feynman e assiale. Le equazioni del moto vengono risolte esplicitamente in entrambi i casi; sotto opportune condizioni, è stato inoltre possibile trovare una base completa e ortonormale di soluzioni delle equazioni di campo in termini di modi normali di Fulling. Si è poi analizzata la quantizzazione dei campi vettoriali espressi in questa base.
Resumo:
Complementary to automatic extraction processes, Virtual Reality technologies provide an adequate framework to integrate human perception in the exploration of large data sets. In such multisensory system, thanks to intuitive interactions, a user can take advantage of all his perceptual abilities in the exploration task. In this context the haptic perception, coupled to visual rendering, has been investigated for the last two decades, with significant achievements. In this paper, we present a survey related to exploitation of the haptic feedback in exploration of large data sets. For each haptic technique introduced, we describe its principles and its effectiveness.
Resumo:
We prove that in quadratic perturbations of generic Hamiltonian vector fields with two saddle points and one center there can appear at most two limit cycles. This bound is exact.
Resumo:
This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
On the Limit Cycles for a Class of Continuous Piecewise Linear Differential Systems with Three Zones
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliographies.
Resumo:
This thesis consists of three articles on passive vector fields in turbulence. The vector fields interact with a turbulent velocity field, which is described by the Kraichnan model. The effect of the Kraichnan model on the passive vectors is studied via an equation for the pair correlation function and its solutions. The first paper is concerned with the passive magnetohydrodynamic equations. Emphasis is placed on the so called "dynamo effect", which in the present context is understood as an unbounded growth of the pair correlation function. The exact analytical conditions for such growth are found in the cases of zero and infinite Prandtl numbers. The second paper contains an extensive study of a number of passive vector models. Emphasis is now on the properties of the (assumed) steady state, namely anomalous scaling, anisotropy and small and large scale behavior with different types of forcing or stirring. The third paper is in many ways a completion to the previous one in its study of the steady state existence problem. Conditions for the existence of the steady state are found in terms of the spatial roughness parameter of the turbulent velocity field.
Resumo:
Medical image segmentation finds application in computer-aided diagnosis, computer-guided surgery, measuring tissue volumes, locating tumors, and pathologies. One approach to segmentation is to use active contours or snakes. Active contours start from an initialization (often manually specified) and are guided by image-dependent forces to the object boundary. Snakes may also be guided by gradient vector fields associated with an image. The first main result in this direction is that of Xu and Prince, who proposed the notion of gradient vector flow (GVF), which is computed iteratively. We propose a new formalism to compute the vector flow based on the notion of bilateral filtering of the gradient field associated with the edge map - we refer to it as the bilateral vector flow (BVF). The range kernel definition that we employ is different from the one employed in the standard Gaussian bilateral filter. The advantage of the BVF formalism is that smooth gradient vector flow fields with enhanced edge information can be computed noniteratively. The quality of image segmentation turned out to be on par with that obtained using the GVF and in some cases better than the GVF.
Resumo:
By the Lie symmetry group, the reduction for divergence-free vector-fields (DFVs) is studied, and the following results are found. A n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV if it admits a one-parameter symmetry group that is spatial and divergenceless. More generally, a n-dimensional DFV admitting a r-parameter, spatial, divergenceless Abelian (commutable) symmetry group can be locally reduced to a (n - r)-dimensional DFV.