778 resultados para Mathematics teachers
Resumo:
Дагмар Рааб Математиката е вълнуваща и забавна. Можем ли да убедим учениците, че това може да стане действителност. Задачите са най-важните инструменти за учителите по математика, когато планират уроците си. Планът трябва да съдържа идеи как да се очертае и как да се жалонира пътят, по който учениците ще стигнат до решението на дадена задача. Учителите не трябва да очакват от учениците си просто да кажат кой е отговорът на задачата, а да ги увлекат в процеса на решаване с подходящи въпроси. Ролята на учителя е да помогне на учениците • да бъдат активни и резултатни при решаването на задачи; • самите те да поставят задачи; • да модифицират задачи; • да откриват закономерности; • да изготвят стратегии за решаване на задачи; • да откриват и изследват различни начини за решаване на задачи; • да намират смислена връзка между математическите си знания и проблеми от ежедневието. В доклада са представени избрани и вече експериментирани примери за това как учители и ученици могат да намерят подходящ път към нов тип преживявания в преподаването и изучаването на училищната математика.
Resumo:
A Learning Assistant program that recruits strong STEM undergraduates to become mathematics teachers was explored through a qualitative study. Three program participants were purposely selected and interviewed. The program reaffirmed one participant’s choice to become a teacher and clarified for one that it might be a career for him.
Resumo:
This study examined standards-based mathematics reform initiatives to determine if they would improve student achievement on the part of low-performing students. New curricula, the Carnegie Learning Cognitive Tutor®, were provided for algebra and geometry students. The new instructional strategy relied on both the teacher-led instruction and the use of computers to differentiate instruction for individual students. Mathematics teachers received ongoing professional development to help them implement the new curricula. In addition, teachers were provided with ongoing support to assist them with the transformation of the learning environments for students using standards-based practices. This quasi-experimental (nonrandomized) study involved teachers in two matched urban high schools. Analyses (ANCOVAs) revealed that the experimental group with an appropriately implemented program had significantly higher learning gains than the comparison group as determined by the students' 2007 mathematics Developmental Scale Score (DSS). In addition, the experimental group's adjusted mean for the second interim mathematics assessment was significantly higher than the comparison group's mean. The findings support the idea that if the traditional curriculum is replaced with standards-based curriculum, and the curriculum is implemented as intended, low-performing students may make significant learning gains. With respect to the teaching practices as observed with the Classroom Observation Protocol (COP), t-tests were conducted on four constructs. The results for both the algebra and geometry teachers on the constructs were not significant. The COP indicated that teachers in both the experimental and comparison groups used traditional instruction strategies in their classrooms. The analyses of covariance (ANCOVA) on the use of technology revealed no significant main effects for computer use.
The impact of standards-based practices in mathematics on the achievement of low-performing students
Resumo:
This study examined standards-based mathematics reform initiatives to determine if they would improve student achievement on the part of low-performing students. New curricula, the Carnegie Learning Cognitive Tutor®, were provided for algebra and geometry students. The new instructional strategy relied on both the teacher-led instruction and the use of computers to differentiate instruction for individual students. Mathematics teachers received ongoing professional development to help them implement the new curricula. In addition, teachers were provided with ongoing support to assist them with the transformation of the learning environments for students using standards-based practices. This quasi-experimental (nonrandomized) study involved teachers in two matched urban high schools. Analyses (ANCOVAs) revealed that the experimental group with an appropriately implemented program had significantly higher learning gains than the comparison group as determined by the students' 2007 mathematics Developmental Scale Score (DSS). In addition, the experimental group's adjusted mean for the second interim mathematics assessment was significantly higher than the comparison group's mean. The findings support the idea that if the traditional curriculum is replaced with standards-based curriculum, and the curriculum is implemented as intended, low-performing students may make significant learning gains. With respect to the teaching practices as observed with the Classroom Observation Protocol (COP), t-tests were conducted on four constructs. The results for both the algebra and geometry teachers on the constructs were not significant. The COP indicated that teachers in both the experimental and comparison groups used traditional instruction strategies in their classrooms. The analyses of covariance (ANCOVA) on the use of technology revealed no significant main effects for computer use.
Resumo:
This article describes some of the issues that teachers might encounter when scaffolding students’ thinking during mathematical investigations. It describes four episodes where a teacher’s scaffolding failed to support students’ mathematical thinking and explores the reasons why the scaffolding was ineffective. Understanding what is ineffective and why is one way to improve pedagogical practice. As a background to these episodes, we first provide an overview of the mathematical investigation. Our paper concludes with some recommendations for judicious scaffolding during investigations.
Resumo:
Number lines are part of our everyday life (e.g., thermometers, kitchen scales) and are frequently used in primary mathematics as instructional aids, in texts and for assessment purposes on mathematics tests. There are two major types of number lines; structured number lines, which are the focus of this paper, and empty number lines. Structured number lines represent mathematical information by the placement of marks on a horizontal or vertical line which has been marked into proportional segments (Figure 1). Empty number lines are blank lines which students can use for calculations (Figure 2) and are not discussed further here (see van den Heuvel-Panhuizen, 2008, on the role of empty number lines). In this article, we will focus on how students’ knowledge of the structured number line develops and how they become successful users of this mathematical tool.
Resumo:
"ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals." -- Publisher website
Resumo:
"ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals." -- Publisher website
Resumo:
"ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals." -- Publisher website
Resumo:
"ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals." -- Publisher website
Resumo:
"ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals." -- Publisher website