998 resultados para MCMC METHODS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O conhecimento do genoma pode auxiliar na identificação de regiões cromossômicas e, eventualmente, de genes que controlam características quantitativas (QTLs) de importância econômica. em um experimento com 1.129 suínos resultantes do cruzamento entre machos da raça Meishan e fêmeas Large White e Landrace, foram analisadas as características gordura intramuscular (GIM), em %, e ganho dos 25 aos 90 kg de peso vivo (GP), em g/dia, em 298 animais F1 e 831 F2, e espessura de toucinho (ET), em mm, em 324 F1 e 805 F2. Os animais das gerações F1 e F2 foram tipificados com 29 marcadores microsatélites. Estudou-se a ligação entre os cromossomos 4, 6 e 7 com GIM, ET e GP. Análises de QTL utilizando-se metodologia Bayesiana foram aplicadas mediante três modelos genéticos: modelo poligênico infinitesimal (MPI); modelo poligênico finito (MPF), considerando-se três locos; e MPF combinado com MPI. O número de QTLs, suas respectivas posições nos três cromossomos e o efeito fenotípico foram estimados simultaneamente. Os sumários dos parâmetros estimados foram baseados nas distribuições marginais a posteriori, obtidas por meio do uso da Cadeia de Markov, algoritmos de Monte Carlo (MCMC). Foi possível evidenciar dois QTLs relacionados a GIM nos cromossomos 4 e 6 e dois a ET nos cromossomos 4 e 7. Somente quando se ajustou o MPI, foram observados QTLs no cromossomo 4 para ET e GIM. Não foi possível detectar QTLs para a característica GP com a aplicação dessa metodologia, o que pode ter resultado do uso de marcadores não informativos ou da ausência de QTLs segregando nos cromossomos 4, 6 e 7 desta população. Foi evidenciada a vantagem de se analisar dados experimentais ajustando diferentes modelos genéticos; essas análises ilustram a utilidade e ampla aplicabilidade do método Bayesiano.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generalized exponential distribution, proposed by Gupta and Kundu (1999), is a good alternative to standard lifetime distributions as exponential, Weibull or gamma. Several authors have considered the problem of Bayesian estimation of the parameters of generalized exponential distribution, assuming independent gamma priors and other informative priors. In this paper, we consider a Bayesian analysis of the generalized exponential distribution by assuming the conventional non-informative prior distributions, as Jeffreys and reference prior, to estimate the parameters. These priors are compared with independent gamma priors for both parameters. The comparison is carried out by examining the frequentist coverage probabilities of Bayesian credible intervals. We shown that maximal data information prior implies in an improper posterior distribution for the parameters of a generalized exponential distribution. It is also shown that the choice of a parameter of interest is very important for the reference prior. The different choices lead to different reference priors in this case. Numerical inference is illustrated for the parameters by considering data set of different sizes and using MCMC (Markov Chain Monte Carlo) methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current research compares the Bayesian estimates obtained for the parameters of processes of ARCH family with normal and Student's t distributions for the conditional distribution of the return series. A non-informative prior distribution was adopted and a reparameterization of models under analysis was taken into account to map parameters' space into real space. The procedure adopts a normal prior distribution for the transformed parameters. The posterior summaries were obtained by Monte Carlo Markov Chain (MCMC) simulation methods. The methodology was evaluated by a series of Bovespa Index returns and the predictive ordinate criterion was employed to select the best adjustment model to the data. Results show that, as a rule, the proposed Bayesian approach provides satisfactory estimates and that the GARCH process with Student's t distribution adjusted better to the data.