978 resultados para MATRIX SUPPORT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular matrix (ECM) provides a framework for cells and gives skin its tensile strength and elasticity. Loss of its integrity necessitates the clearing of damaged components and the deposition of firstly a provisional matrix and later remodelling of the ECM to support a functionally intact tissue. Matrix metalloproteinases (MMPs) are an important family of enzymes that function in the breakdown of the ECM and modulate the function of many biologically active molecules housed in the ECM. Through their enzymatic actions MMPs play a role in fundamental processes such as immune cell infiltration and ECM remodelling during wound repair. Their tight control is necessary for timely wound healing and excessive MMP activity participates in the development and persistence of chronic wounds, while reduced activity contributes to fibrosis. A number of inhibitors have been designed to target this activity and improve wound healing with limited success. Novel strategies are currently being investigated to improve wound healing by targeting MMP modulating molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims Biological and synthetic scaffolds play important roles in tissue engineering and are being developed towards human clinical applications. Based on previous work from our laboratory, we propose that extracellular matrices from skeletal muscle could be developed for adipose tissue engineering. Methods Extracellular matrices (Myogels) extracted from skeletal muscle of various species were assessed using biochemical assays including ELISA and Western blotting. Biofunctionality was assessed using an in vitro differentiation assay and a tissue engineering construct model in the rat. Results Myogels were successfully extracted from mice, rats, pigs and humans. Myogels contained significant levels of laminin α4- and α2-subunits and collagen I compared to Matrigel™, which contains laminin 1 (α1β1γ1) and collagen IV. Levels of growth factors such as fibroblast growth factor 2 were significantly higher than Matrigel, vascular endothelial growth factor-A levels were significantly lower and all other growth factors were comparable. Myogels reproducibly stimulated adipogenic differentiation of preadipocytes in vitro and the growth of adipose tissue in the rat. Conclusions We found Myogel induces adipocyte differentiation in vitroand shows strong adipogenic potential in vivo, inducing the growth of well-vascularised adipose tissue. Myogel offers an alternative for current support scaffolds in adipose tissue engineering, allowing the scaling up of animal models towards clinical adipose tissue engineering applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in vivo murine vascularized chamber model has been shown to generate spontaneous angiogenesis and new tissue formation. This experiment aimed to assess the effects of common biological scaffolds on tissue growth in this model. Either laminin-1, type I collagen, fibrin glue, hyaluronan, or sea sponge was inserted into silicone chambers containing the epigastric artery and vein, one end was sealed with adipose tissue and the other with bone wax, then incubated subcutaneously. After 2, 4, or 6 weeks, tissue from chambers containing collagen I, fibrin glue, hyaluronan, or no added scaffold (control) had small amounts of vascularized connective tissue. Chambers containing sea sponge had moderate connective tissue growth together with a mild "foreign body" inflammatory response. Chambers containing laminin-1, at a concentration 10-fold lower than its concentration in Matrigel™, resulted in a moderate adipogenic response. In summary, (1) biological hydrogels are resorbed and gradually replaced by vascularized connective tissue; (2) sponge-like matrices with large pores support connective tissue growth within the pores and become encapsulated with granulation tissue; (3) laminin-containing scaffolds facilitate adipogenesis. It is concluded that the nature and chemical composition of the scaffold exerts a significant influence on the amount and type of tissue generated in this in vivo chamber model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously demonstrated that fibroblasts and invasive human breast carcinoma (HBC) cells specifically activate matrix metalloproteinase- 2 (MMP-2) when cultured on 3-dimensional gels of type I collagen but not a range of other substrates. We show here the constitutive expression of membrane-type 1 (MT1)-MMP in both fibroblasts, and invasive HBC cell lines, that have fibroblastic attributes presumably acquired through an epithelial- to-mesenchymal transition (EMT). Treatment with collagen type I increased the steady-state MT1-MMP mRNA levels in these cells but did not induce either MT1-MMP expression or MMP-2 activation in noninvasive breast carcinoma cell lines, which retain epithelial features. Basal MT3-MMP mRNA expression had a pattern similar to that of MT1-MMP but was not up-regulated by collagen. MT4- MMP mRNA was seen in both invasive and noninvasive HBC cell lines and was also not collagen-regulated, and MT2-MMP mRNA was not detected in any of the HBC cell lines tested. These data support a role for MT1-MMP in the collagen- induced MMP-2-activation seen in these cells. In situ hybridization analysis of archival breast cancer specimens revealed a close parallel in expression of both collagen type I and MT1-MMP mRNA in peritumoral fibroblasts, which was correlated with aggressiveness of the lesion. Relatively high levels of expression of both mRNA species were seen in fibroblasts close to invasive tumor nests and, although only focally, in certain areas close to preinvasive tumors. These foci may represent hot spots for local degradation and invasive progression. Collectively, these results implicate MT1-MMP in collagen- stimulated MMP-2 activation and suggest that this mechanism may be employed in vivo by both tumor-associated fibroblasts and EMT-derived carcinoma cells to facilitate increased invasion and/or metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited C-2 symmetry and spin parity of the system to obtain excited states of experimental interest, and studied the lowest dipole allowed excited state and lowest dipole forbidden two photon state, for different oligomer sizes. In the long system limit, the dipole allowed excited state always lies below the lowest dipole forbidden two-photon state which implies, by Kasha rule, that polythiophene fluoresces strongly. The lowest triplet state lies below two-photon state as usual in conjugated polymers. We have doped the system with a hole and an electron and obtained the charge excitation gap and the binding energy of the 1(1)B(u)(-) exciton. We have calculated the charge density of the ground, one-photon and two-photon states for the longer system size of 10 thiophene rings to characterize these states. We have studied bond order in these states to get an idea about the equilibrium excited state geometry of the system. We have also studied the charge density distribution of the singly and doubly doped polarons for longer system size, and observe that polythiophenes do not support bipolarons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ EXAFS and X-ray diffraction investigations of Ni/TiO2 catalysts show that NiTiO3 is formed as an intermediate during calcination of catalyst precursors prepared by the wet-impregnation method; the intermediate is not formed when ion-exchange method is used for the preparation. On hydrogen reduction, NiTiO3 gives rise to Ni particles dispersed in the TiO2(rutile) matrix. The occurrence of the anatase-rutile transformation of the TiO2 support, the formation and subsequent decomposition/reduction of NiTiO3 as well as the unique interface properties of the Ni particles are all factors of importance in giving rise to metal-support interaction. Active TiO2(anatase) prepared from gel route gives an additional species involving Ni3+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computational scheme for determining the dynamic stiffness coefficients of a linear, inclined, translating and viscously/hysteretically damped cable element is outlined. Also taken into account is the coupling between inplane transverse and longitudinal forms of cable vibration. The scheme is based on conversion of the governing set of quasistatic boundary value problems into a larger equivalent set of initial value problems, which are subsequently numerically integrated in a spatial domain using marching algorithms. Numerical results which bring out the nature of the dynamic stiffness coefficients are presented. A specific example of random vibration analysis of a long span cable subjected to earthquake support motions modeled as vector gaussian random processes is also discussed. The approach presented is versatile and capable of handling many complicating effects in cable dynamics in a unified manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-covalent halogen-bonding interactions between n cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl center dot center dot center dot pi adduct being the global minimum, where pi cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H...Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl center dot center dot center dot pi and C-H center dot center dot center dot Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl center dot center dot center dot pi interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)(2)-CCl4) and 1:2 (C2H2-(CCl4)(2)) multimers and their identification in the low temperature matrixes were also discussed. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. Methods: Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. Results: When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. Conclusions: We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering changes (ECs) are raised throughout the lifecycle of engineering products. A single change to one component produces knock-on effects on others necessitating additional changes. This change propagation significantly affects the development time and cost and determines the product's success. Predicting and managing such ECs is, thus, essential to companies. Some prediction tools model change propagation by algorithms, whereof a subgroup is numerical. Current numerical change propagation algorithms either do not account for the exclusion of cyclic propagation paths or are based on exhaustive searching methods. This paper presents a new matrix-calculation-based algorithm which can be applied directly to a numerical product model to analyze change propagation and support change prediction. The algorithm applies matrix multiplications on mutations of a given design structure matrix accounting for the exclusion of self-dependences and cyclic propagation paths and delivers the same results as the exhaustive search-based Trail Counting algorithm. Despite its factorial time complexity, the algorithm proves advantageous because of its straightforward matrix-based calculations which avoid exhaustive searching. Thereby, the algorithm can be implemented in established numerical programs such as Microsoft Excel which promise a wider application of the tools within and across companies along with better familiarity, usability, practicality, security, and robustness. © 1988-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed analysis of the photoluminescence (PL) from Si nanocrystals (NCs) embedded in a silicon-rich SiO2 matrix is reported. The PL spectra consist of three Gaussian bands (peaks A,B, and C), originated from the quantum confinement effect of Si NCs, the interface state effect between a Si NC and a SiO2 matrix, and the localized state transitions of amorphous Si clusters, respectively. The size and the surface chemistry of Si NCs are two major factors affecting the transition of the dominant PL origin from the quantum confinement effect to the interface state recombination. The larger the size of Si NCs and the higher the interface state density (in particular, Si = O bonds), the more beneficial for the interface state recombination process to surpass the quantum confinement process, in good agreement with Qin's prediction in Qin and Li [Phys. Rev. B 68, 85309 (2003)]. The realistic model of Si NCs embedded in a SiO2 matrix provides a firm theoretical support to explain the transition trend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface state recombination effect from the quantum confinement effect in PL signals from the SRO material system was studied. The results show that the larger the size of Si NCs, the more beneficial for the interface state recombination process to surpass the quantum confinement process, in support of Qin's model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.