995 resultados para Jacobian arithmetic


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerically well-conditioned state-space realisations for all-pass systems, such as Padé approximations to exp(-s), are derived that can be computed using exact integer arithmetic. This is then applied to the a series of functions of exp(-s). It is also shown that the H-infinity norm of the transfer function from the input to the state of a balanced realisation of the Padé approximation of exp(-s) is unity. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global stabilization of a class of feedforward systems having an exponentially unstable Jacobian linearization is achieved by a high-gain feedback saturated at a low level. The control law forces the derivatives of the state variables to small values along the closed-loop trajectories. This "slow control" design is illustrated with a benchmark example and its limitations are emphasized. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

视觉伺服可以应用于机器人初始定位自动导引、自动避障、轨线跟踪和运动目标跟踪等控制系统中。传统的视觉伺服系统在运行时包括工作空间定位和动力学逆运算两个过程,需要实时计算视觉雅可比矩阵和机器人逆雅可比矩阵,计算量大,系统结构复杂。本文分析了基于图像的机器人视觉伺服的基本原理,使用BP神经网络来确定达到指定位姿所需要的关节角度,将视觉信息直接融入伺服过程,在保证伺服精度的情况下大大简化了控制算法。文中针对Puma560工业机器人的模型进行了仿真实验,结果验证了该方法的有效性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hardware implementations of arithmetic operators using signed digit arithmetic have lost some of their earlier popularity. However, SD is revisited and used to realise an efficient radix-16 generic multiplier, which has particular potential for low-power implementation. The SD multiplier algorithm reduces the number of partial products to as much as 1/4, and in initial tests reduces the estimated power consumption to only about 50% of that of the Booth multiplier. It is different from other previous high-radix methods in that it employs a novel method to generate its partial products with zero arithmetic logic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high performance VLSI architecture to perform combined multiply-accumulate, divide, and square root operations is proposed. The circuit is highly regular, requires only minimal control, and can be pipelined right down to the bit level. The system can also be reconfigured on every cycle to perform one or more of these operations. The throughput rate for each operation is the same and is wordlength independent. This is achieved using redundant arithmetic. With current CMOS technology, throughput rates in excess of 80 million operations per second are expected.