984 resultados para Inclusion complex
Resumo:
Herein we report the spectroscopic, electrochemical, TEM and DLS characterizations Of C-60 supramolecular inclusion complexes with alpha-, beta- and gamma-cyclodextrins prepared using anionic C-60. The results indicate that the cyclodextrin itself has little effect on the encapsulated C-60 or on the properties of the inclusion complex. Instead, the cyclodextrin has a significant influence on the aggregation behavior of individual complex in aqueous solution, which in turn affects the property of the supramolecular complex of cyclodextrin and C-60 greatly, As the cavity dimension of cyclodextrin becomes smaller as it changes from gamma-CD to beta-CD, and finally to alpha-CD, it is observed that more aggregation occurs for the corresponding inclusion complex in aqueous solution.
Resumo:
Hydroquinone was chosen as an electroactive probe to study the beta-cyclodextrin (beta-CD) modified poly(N-acetylaniline) (PNAANI) electrode. The beta-CD modified PNAANI electrode was prepared by electrooxidation of the PNAANI electrode in a beta-CD/DMSO solution. The electrochemical properties of the beta-CD inclusion complex of hydroquinone on the PNAANI electrode and hydroquinone on the beta-CD modified PNAANI electrode were studied. In the cyclic voltammogram of hydroquinone at the beta-CD/PNAANI electrode, DeltaE(p) of the peaks is sharpening and the area of the peaks is increasing, which can be due to the inclusion of hydroquinone into the cavity of beta-CD immobilized at the electrode surface. The beta-CD/PNAANI film was characterized by X-ray photoelectron spectroscopy and H-1 NMR. The mechanism for beta-CD incorporation into the polymer film was also proposed.
Resumo:
The complexation of acenaphthene and fluoranthene with beta-cyclodextrin (CD) in aqueous solutions in the presence and absence of ethanol was investigated by means of the time-resolved fluorescence technique. The appearance of a longer lifetime component and the increase of its fraction relative to that of the shorter lifetime component with increasing CD concentration demonstrate the formation of inclusion complex between the guest molecule and CD. The formation constants for complexation were derived from the pre-exponential factor A(i) of fluorescence decay curves. The presence of ethanol in the reaction systems enhanced the inclusion to a large extent.
Resumo:
All mammals lose their ability to produce lactase (β-galactosidase), the enzyme that cleaves lactose into galactose and glucose, after weaning. The prevalence of lactase deficiency (LD) spans from 2 to 15% among northern Europeans, to nearly 100% among Asians. Following lactose consumption, people with LD often experience gastrointestinal symptoms such as abdominal pain, bowel distension, cramps and flatulence, or even systemic problems such as headache, loss of concentration and muscle pain. These symptoms vary depending on the amount of lactose ingested, type of food and degree of intolerance. Although those affected can avoid the uptake of dairy products, in doing so, they lose a readily available source of calcium and protein. In this work, gels obtained by complexation of Tetronic 90R4 with α-cyclodextrin loaded with β-galactosidase are proposed as a way to administer the enzyme immediately before or with the lactose-containing meal. Both molecules are biocompatible, can form gels in situ, and show sustained erosion kinetics in aqueous media. The complex was characterized by FTIR that evidenced an inclusion complex between the polyethylene oxide block and α-cyclodextrin. The release profiles of β-galactosidase from two different matrices (gels and tablets) of the in situ hydrogels have been obtained. The influence of the percentage of Tetronic in media of different pH was evaluated. No differences were observed regarding the release rate from the gel matrices at pH 6 (t50 = 105 min). However, in the case of the tablets, the kinetics were faster and they released a greater amount of 90R4 (25%, t50 = 40–50 min). Also, the amount of enzyme released was higher for mixtures with 25% Tetronic. Using suitable mathematical models, the corresponding kinetic parameters have been calculated. In all cases, the release data fit quite well to the Peppas–Sahlin model equation, indicating that the release of β-galactosidase is governed by a combination of diffusion and erosion processes. It has been observed that the diffusion mechanism prevails over erosion during the first 50 minutes, followed by continued release of the enzyme due to the disintegration of the matrix.
Resumo:
Mestrado em Engenharia Química - Ramo Tecnologias de Protecção Ambiental
Resumo:
O crescimento populacional esperado para os próximos anos conduzirá à necessidade de aumentar a produção agrícola de modo a satisfazer o aumento da procura. Nos últimos anos tem-se assistido a uma evolução tecnológica nos sistemas de produção que tem permitido aumentar a produtividade agrícola, por vezes à custa de elevados consumos de energia e com práticas nem sempre ambientalmente corretas. Os desafios que se colocam atualmente são no sentido de melhorar a conservação de recursos escassos, como o solo e a água, de aumentar a eficiência de uso de fatores de produção, de encontrar novas culturas, do desenvolvimento da biotecnologia, da diminuição dos consumos energéticos e de melhorar ainda mais as tecnologias associadas à produção. De maneira a responder aos desafios emergentes da procura por alimentos, da escassez de terrenos agrícolas aráveis bem como da existência de pragas de insetos e de ervas daninhas, os pesticidas tem vindo a ser usados com maior frequência, tendo-se assistido a uma contaminação dos solos e águas subterrâneas, causando deste modo um risco para a saúde dos seres vivos. Neste sentido, vários fabricantes de pesticidas estão a desenvolver novas formulações contendo pesticidas encapsulados em nanopartículas como modo de aumentar a sua solubilidade em água, biodisponibilidade, volatilidade, estabilidade e eficácia. tendo por objetivo um desenvolvimento sustentável. Neste trabalho, procedeu-se ao estudo do encapsulamento do herbicida Oxadiargil (5-terc-butil-3-[2,4-dicloro-5-(2-propiniloxi)fenil]-1,3,4-oxadiazol-2(3H)-ona) com a 2-hidroxipropil-β-ciclodextrina (HP-β-CD). O estudo da formação do complexo de inclusão Oxadiargil - HP-β-CD foi realizado em diferentes meios, água desionizada, tampão acetato pH = 3,46 e pH = 5,34 e tampão fosfato pH = 7,45, com o objetivo de determinar e comparar a sua constante de estabilidade. Verificou-se, em qualquer dos casos, a ocorrência de uma relação linear entre o aumento da solubilidade do Oxadiargil e o aumento da concentração de HP-β-CD, com um declive inferior a um, o que indicia a formação de um complexo na proporção estequiométrica de 1:1. Os resultados obtidos permitiram concluir que o processo de complexação Oxadiargil - HP-β-CD não é muito influenciado pela constituição e pelo pH do meio. De facto, as constantes de estabilidade obtidas para a água desionizada e soluções-tampão pH = 3,46, pH = 5,34 e pH = 7,45 foram de 919 ± 25, 685 ± 13, 623 ± 17 e 753 ± 9, respetivamente. A solubilidade do complexo obtido nos estudos realizados, em diferentes meios, é cerca de 23 a 32 vezes superior à observada para o Oxadiargil livre. De forma a caracterizar o complexo Oxadiargil - HP-β-CD procedeu-se à sua síntese utilizando o método de “kneading”. O composto obtido foi caracterizado por Ressonância Magnética Nuclear (RMN) tendo-se confirmado a formação de um complexo de inclusão na proporção estequiométrica de 1:1. O complexo obtido é mais solúvel e porventura mais estável quimicamente. O encapsulamento permite uma redução da aplicação dos pesticidas diminuindo assim os custos e o impacto negativo no ambiente. Com a nanotecnologia é possível a libertação controlada dos pesticidas, aumentando a sua eficácia e fornecendo os meios necessários para um desenvolvimento sustentável.
Resumo:
Absorption and fluorescence spectroscopy, electrochemical techniques, and semiempirical calculations were employed to characterize the multiple complexation equilibria between two polymethine cyanine dyes (IR-786 and Indocyanine green-ICG, 5) and beta-cyclodextrin (beta-CD, L), as well as the chemical reactivity of the complexed and uncomplexed species against the oxidizing agents hypochlorite (HC) and hydrogen peroxide (HP). IR-786 dimerization is favored with the increase in beta-CD concentration in the form of (SL)(2) complexes. In the case of ICG, free dimers (D) and SL complexes are favored. Both IR-786 and ICG react and discolor in the presence of HC and HP. For IR-786, the reaction with HP and HC proceeds with observed rate constants of 10(-3) and 0.28 s(-1) and second-order rate constants (k(2)) of similar to 10(-3) and 10(4) M(-1) s(-1), respectively. The intermediate species observed in the bleaching reactions of IR-786 and ICG were shown, by cyclic voltammetry and VIS absorption, to result from one electron oxidation. IR-786 complexed with beta-CD is protected against bleaching in the presence of HP and HC by factors of 20 and 4, respectively. This protection was not observed in ICG complexes. Superdelocalizability profile of both dyes and frontier orbital analysis indicates that beta-CD does not protect ICG from oxidation by HP or HC, whereas the 2:2 IR-786/beta-Cd complex is able to avoid the oxidation of IR-786. We concluded that the decrease in the chemical reactivity of the dyes against oxidant agents in the presence of beta-CD is due to the formation of (SL)(2) complexes. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job`s plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chagas disease is a serious health problem in Latin America. Hidroxymethylnitrofurazone (NFOH) is a nitrofurazone prodrug more active than nitrofurazone against Trypanosoma cruzi. However, NFOH presents low aqueous solubility, high photodecomposition and high toxicity. The present work is focused on the characterization of an inclusion complex of NFOH in 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD). The complexation with HP-beta-CD was investigated using reversed-phase liquid chromatography, solubility isotherms and nuclear magnetic resonance. The retention behavior was analyzed on a reversed-phase C-18 column, using acetonitrile-water (20/80, v/v) as the mobile phase, in which HP-beta-CD was incorporated as a mobile phase additive. The decrease in the retention times with increasing concentrations of HP-beta-CD enables the determination of the apparent stability constant of the complex (K = 6.2 +/- 0.3 M-1) by HPLC. The solubility isotherm was studied and the value for the apparent stability constant (K = 7.9 +/- 0.2 M-1) was calculated. The application of continuous variation method indicated the presence of a complex with 1:1 NFOH:HP-beta-CD stoichiometry. The photostability study showed that the formation of an inclusion complex had a destabilizing effect on the photodecomposition of NFOH when compared to that of the "free" molecule in solution. The mobility investigation (by NMR longitudinal relaxation time) gives information about the complexation of NFOH with HP-beta-CD. In preliminary toxicity studies, cell viability tests revealed that inclusion complexes were able to decrease the toxic effect (p < 0.01) caused by NFOH. (c) 2008 Elsevier B.V. All rights reserved.