982 resultados para Fractional Brownian motion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study integral representations of Gaussian processes with a pre-specified law in terms of other Gaussian processes. The dissertation consists of an introduction and of four research articles. In the introduction, we provide an overview about Volterra Gaussian processes in general, and fractional Brownian motion in particular. In the first article, we derive a finite interval integral transformation, which changes fractional Brownian motion with a given Hurst index into fractional Brownian motion with an other Hurst index. Based on this transformation, we construct a prelimit which formally converges to an analogous, infinite interval integral transformation. In the second article, we prove this convergence rigorously and show that the infinite interval transformation is a direct consequence of the finite interval transformation. In the third article, we consider general Volterra Gaussian processes. We derive measure-preserving transformations of these processes and their inherently related bridges. Also, as a related result, we obtain a Fourier-Laguerre series expansion for the first Wiener chaos of a Gaussian martingale. In the fourth article, we derive a class of ergodic transformations of self-similar Volterra Gaussian processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of sound signals in vertebrates involves a complex network of different mechano-sensory elements in the inner ear. An especially important element in this network is the hair bundle, an antenna-like array of stereocilia containing gated ion channels that operate under the control of one or more adaptation motors. Deflections of the hair bundle by sound vibrations or thermal fluctuations transiently open the ion channels, allowing the flow of ions through them, and producing an electrical signal in the process, eventually causing the sensation of hearing. Recent high frequency (0.1-10 kHz) measurements by Kozlov et al. Proc. Natl. Acad. Sci. U. S. A. 109, 2896 (2012)] of the power spectrum and the mean square displacement of the thermal fluctuations of the hair bundle suggest that in this regime the dynamics of the hair bundle are subdiffusive. This finding has been explained in terms of the simple Brownian motion of a filament connecting neighboring stereocilia (the tip link), which is modeled as a viscoelastic spring. In the present paper, the diffusive anomalies of the hair bundle are ascribed to tip link fluctuations that evolve by fractional Brownian motion, which originates in fractional Gaussian noise and is characterized by a power law memory. The predictions of this model for the power spectrum of the hair bundle and its mean square displacement are consistent with the experimental data and the known properties of the tip link. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4768902]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the asymptotic properties of nonlinear least squares estimators of the long run parameters in a bivariate unbalanced cointegration framework. Unbalanced cointegration refers to the situation where the integration orders of the observables are different, but their corresponding balanced versions (with equal integration orders after filtering) are cointegrated in the usual sense. Within this setting, the long run linkage between the observables is driven by both the cointegrating parameter and the difference between the integration orders of the observables, which we consider to be unknown. Our results reveal three noticeable features. First, superconsistent (faster than √ n-consistent) estimators of the difference between memory parameters are achievable. Next, the joint limiting distribution of the estimators of both parameters is singular, and, finally, a modified version of the ‘‘Type II’’ fractional Brownian motion arises in the limiting theory. A Monte Carlo experiment and the discussion of an economic example are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La existencia de memoria de largo plazo en las series financieras implica que los retornos de un activo hoy pueden tener incidencia sobre los retornos futuros, incluso más allá del corto plazo. En presencia de dicha memoria el horizonte de inversión elegido puede resultar en diferentes condiciones de riesgo para el inversionista. Peters (1989 y 1992), Mandelbrot (1972), León y Vivas (2010), entre otros, encuentran evidencia de dependencia de largo plazo de las series de tiempo financieras y muestran sus principales implicaciones. Este documento se ocupa de extender el análisis al uso del supuesto de neutralidad del horizonte de tiempo en el CAPM, estimando el efecto cuantitativo de la existencia de dependencia de largo plazo en este modelo según lo desarrollado por Greene y Fieltz (1980). Los resultados para una muestra de acciones colombianas y estadounidenses muestran que la distribución de la medida del riesgo sistémico en el modelo, el beta, es estadísticamente diferente cuando se incorpora el efecto de dependencia de largo plazo; por lo tanto, los retornos esperados de estas acciones cambian. En el mercado colombiano se observa una sobreestimación del beta cuando no se realiza el ajuste propuesto, mientras que en las acciones estadounidenses analizadas el beta sin el ajuste se encuentra subestimado. En cuanto a los retornos esperados, estos son sobrevalorados al no tener en cuenta el ajuste por dependencia de largo plazo, tanto en las acciones colombianas como en las estadounidenses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish a general framework for a class of multidimensional stochastic processes over [0,1] under which with probability one, the signature (the collection of iterated path integrals in the sense of rough paths) is well-defined and determines the sample paths of the process up to reparametrization. In particular, by using the Malliavin calculus we show that our method applies to a class of Gaussian processes including fractional Brownian motion with Hurst parameter H>1/4, the Ornstein–Uhlenbeck process and the Brownian bridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project uses methods of terrain representation, creation and realism described in literature. We find that using a combination of Fractional Brownian Motion and procedural formation of rivers via squig curves to form initial terrain, with hydraulic erosion for post processing, we have full control over the style of terrain: from jagged mountains to flat regions; and the phase of river from tightly rock controlled to flood plain regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the mechanisms responsible for the anomalous diffusion is the existence of long-range temporal correlations, for example, Fractional Brownian Motion and walk models according to Elephant memory and Alzheimer profiles, whereas in the latter two cases the walker can always "remember" of his first steps. The question to be elucidated, and the was the main motivation of our work, is if memory of the historic initial is condition for observation anomalous diffusion (in this case, superdiffusion). We give a conclusive answer, by studying a non-Markovian model in which the walkers memory of the past, at time t, is given by a Gaussian centered at time t=2 and standard deviation t which grows linearly as the walker ages. For large widths of we find that the model behaves similarly to the Elephant model; In the opposite limit (! 0), although the walker forget the early days, we observed similar results to the Alzheimer walk model, in particular the presence of amnestically induced persistence, characterized by certain log-periodic oscillations. We conclude that the memory of earlier times is not a necessary condition for the generating of superdiffusion nor the amnestically induced persistence and can appear even in profiles of memory that forgets the initial steps, like the Gausssian memory profile investigated here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal geometry would appear to offer promise for new insight on water transport in unsaturated soils, This study was conducted to evaluate possible fractal influence on soil water diffusivity, and/or the relationships from which it arises, for several different soils, Fractal manifestations, consisting of a time-dependent diffusion coefficient and anomalous diffusion arising out of fractional Brownian motion, along with the notion of space-filling curves were gleaned from the literature, It was found necessary to replace the classical Boltzmann variable and its time t(1/2) factor with the basic fractal power function and its t(n) factor, For distinctly unsaturated soil water content theta, exponent n was found to be less than 1/2, but it approached 1/2 as theta approached its sated value, This function n = n(theta), in giving rise to a time-dependent, anomalous soil water diffusivity D, was identified with the Hurst exponent H of fractal geometry, Also, n approaching 1/2 at high water content is a behavior that makes it possible to associate factal space filling with soil that approaches water saturation, Finally, based on the fractally interpreted n = n(theta), the coalescence of both D and 8 data is greatly improved when compared with the coalescence provided by the classical Boltzmann variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observed deviations from traditional concepts of soil-water movement are considered in terms of fractals. A connection is made between this movement and a Brownian motion, a random and self-affine type of fractal, to account for the soil-water diffusivity function having auxiliary time dependence for unsaturated soils. The position of a given water content is directly proportional to t(n), where t is time, and exponent n for distinctly unsaturated soil is less than the traditional 0.50. As water saturation is approached, n approaches 0.50. Macroscopic fractional Brownian motion is associated with n < 0.50, but shifts to regular Brownian motion for n = 0.50.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e. g., fractional Brownian motion, Levy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation sigma t which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very recently (Banerjee et al. in Astrophys. Space, doi:1007/s10509-011-0836-1, 2011) the statistics of geomagnetic Disturbance storm (Dst) index have been addressed, and the conclusion from this analysis suggests that the underlying dynamical process can be modeled as a fractional Brownian motion with persistent long-range correlations. In this comment we expose several misconceptions and flaws in the statistical analysis of that work. On the basis of these arguments, the former conclusion should be revisited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data processing services for Meteosat geostationary satellite are presented. Implemented services correspond to the different levels of remote-sensing data processing, including noise reduction at preprocessing level, cloud mask extraction at low-level and fractal dimension estimation at high-level. Cloud mask obtained as a result of Markovian segmentation of infrared data. To overcome high computation complexity of Markovian segmentation parallel algorithm is developed. Fractal dimension of Meteosat data estimated using fractional Brownian motion models.