969 resultados para Field effect semiconductor devices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors present a review of recent developments in the detection of biomolecular interactions with field-effect devices. Ion-sensitive field-effect transistors (ISFETs) and enzyme field-effect transistors (EnFETs), based on polycrystalline silicon (poly-Si) TFTs, are discussed. Label-free electrical detection of DNA hybridization has been achieved by a new method, by using MOS capacitors or poly-Si TFTs. In principle, the method can be extended to other chemical or biochemical systems, such as proteins and cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the response of a sol-gel based TiO(2), high k dielectric field effect transistor structure to microwave radiation. Under fixed bias conditions the transistor shows frequency dependent current fluctuations when exposed to continuous wave microwave radiation. Some of these fluctuations take the form of high Q resonances. The time dependent characteristics of these responses were studied by modulating the microwaves with a pulse signal. The measurements show that there is a shift in the centre frequency of these high Q resonances when the pulse time is varied. The measured lifetime of these resonances is high enough to be useful for non-classical information processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. © 2012 Tan et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the couplings between different energy band valleys in a metal-oxide-semiconductor field-effect transistor (MOSFET) device using self-consistent calculations of million-atom Schrodinger-Poisson equations. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2 V and a gate potential close to the threshold potential. We find that all the intervalley couplings are small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived from different bulk valleys can be calculated separately. This will significantly reduce the simulation time because the diagonalization of the Hamiltonian matrix scales as the third power of the total number of basis functions. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel single-electron multiple-valued memory. It is a metal-oxide-semiconductor field effect transistor (MOS)-type memory with multiple separate control gates and floating gate layer, which consists of nano-crystal grains. The electron can tunnel among the grains (floating gates) and between the floating gate layer and the MOS channel. The memory can realize operations of 'write', 'store' and 'erase' of multiple-valued signals exceeding three values by controlling the single electron tunneling behavior. We use Monte Carlo method to simulate the operation of single-electron four-valued memory. The simulation results show that it can operate well at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-electron turnstile and electrometer circuit was fabricated on a silicon-on-insulator substrate. The turnstile, which is operated by opening and closing two metal-oxide-semiconductor field-effect transistors (MOSFETs) alternately, allows current quantization at 20 K due to single-electron transfer. Another MOSFET is placed at the drain side of the turnstile to form an electron storage island. Therefore, one-by-one electron entrance into the storage island from the turnstile can be detected as an abrupt change in the current of the electrometer, which is placed near the storage island and electrically coupled to it. The correspondence between the quantized current and the single-electron counting was confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical model is proposed to understand backgating in GaAs metal-semiconductor field-effect transistors (MESFETs), in which the effect of channel-substrate (CS) junction is included. We have found that the limitation of CS junction to leakage current will cause backgate voltage to apply directly to CS junction and result in a threshold behavior in backgating effect. A new and valuable expression for the threshold voltage has been obtained. The corresponding threshold electric field is estimated to be in the range of 1000-4000 V/cm and for the first time is in good agreement with reported experimental data. More, the eliminated backgating effect in MESFETs that are fabricated on the GaAs epitaxial layer grown at low temperature is well explained by our theory. (C) 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phthalocyanato tin(IV) dichloride, an axially dichloriniated MPc, is an air-stable high performance n-type organic semiconductor with a field-effect electron mobility of up to 0.30 cm(2) V-1 s(-1). This high mobility together with good device stability and commercial availability makes it a most suitable n-type material for future organic thin-film transistor applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated electrical properties of vanadyl phthalocyanine (VOPc) metal-insulator-semiconductor (MIS) devices by the measurement of capacitance and conductance, which were fabricated on ordered para-sexiphenyl (p-6P) layer by weak epitaxy growth method. The VOPc/p-6P MIS diodes showed a negligible hysteresis effect at a gate voltage of +/- 20 V and small hysteresis effect at a gate voltage of +/- 40 V due to the low interface trap state density of about 1x10(10) eV(-1) cm(-2). Furthermore, a high transition frequency of about 10 kHz was also observed under their accumulation mode. The results indicated that VOPc was a promising material and was suitable to be applied in active matrix liquid crystal displays and organic logic circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An organic thin-film transistor (OTFT) having a low-dielectric polymer layer between gate insulator and source/drain electrodes is investigated. Copper phthalocyanine (CuPc), a well-known organic semiconductor, is used as an active layer to test performance of the device. Compared with bottom-contact devices, leakage current is reduced by roughly one order of magnitude, and on-state current is enhanced by almost one order of magnitude. The performance of the device is almost the same as that of a top-contact device. The low-dielectric polymer may play two roles to improve OTFT performance. One is that this structure influences electric-field distribution between source/drain electrodes and semiconductor and enhances charge injection. The other is that the polymer influences growth behavior of CuPc thin films and enhances physical connection between source/drain electrodes and semiconductor channel. Advantages of the OTFT having bottom-contact structure make it useful for integrated plastic electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013