142 resultados para Combinatoria
Resumo:
Inicialmente, se tratará de delimitar el campo de acción al que se refiere la palabra juego y qué tipo de juegos se propone utilizar. A continuación se considerarán las razones culturales, matemáticas, educacionales, sociológicas y psicológicas que aconsejan su incorporación en la enseñanza de las Matemáticas y algunas sugerencias que ayuden a determinar su forma de utilización en el aula. Posteriormente se realizará el análisis de algunos juegos y, para finalizar, el artículo se centrará en la experimentación en el aula y las conclusiones.
Resumo:
En esta sección vamos a proponer que el cine entre en la clase de matemáticas en secundaria. No se tratará sólo de entretener a los alumnos, aunque también (¡ojalá lo consiguiéramos más a menudo!), sino de aprovechar la fascinación de la pantalla para sembrar en sus mentes una idea esencial: las Matemáticas no son algo muerto, limitado a una clase y unos libros, sino que están en nuestro mundo, jugando un papel importante, tanto en la historia colectiva como en muchas historias personales. Pero hay que saber verlas, como también hay que saber ver el cine. El cine es la gran ilusión que en la oscuridad de una sala, que puede ser el aula, suplanta a la realidad. En clase, cada escena precisará un análisis posterior, una puesta en común que, además de enseñar a ver, establezca un nexo verosímil entre esa ilusión y la realidad verdadera. En cada artículo se harán reflexiones sobre el alcance y validez de la propuesta. Después, se propondrán diversas escenas, concretando los niveles y temas para su uso didáctico. Seguramente despierten la memoria cinematográfica del lector. SUMA podría ser receptora de las reseñas que permitan la localización de otras escenas por cualquier profesor interesado en la propuesta y componer con ellas un listado útil.
Resumo:
Una vez acordado el precio nos ponemos en camino. Son las ocho de la mañana y hace un día espléndido. El cielo es una sábana azul sin mácula y el verdor intenso que nos rodea justo al abandonar las bulliciosas calles de Ternate refleja la luz del astro en multitud de tonalidades deslumbrantes. La carretera serpentea arriba y abajo perfilando la costa con el mar a la derecha. Después de pasar por diversos pueblos y atravesar un bosque espeso la vegetación desaparece de repente al llegar a Batu Angus (roca abrasada), una cicatriz colosal e imborrable, un río pétreo vestigio de la erupción del Gamalama en el siglo XVIII.
Resumo:
En este trabajo se plantea la necesidad de motivar el estudio de modelos matemáticos considerando algunos casos básicos de naturaleza combinatoria de importancia en el mundo real. El estudio de los correspondientes problemas de optimización y la introducción y aplicación de métodos de resolución sencillos se toma como base para argumentar a favor de su inclusión, como alternativa válida para motivar la utilidad de las Matemáticas, en los últimos cursos de la enseñanza secundaria.
Resumo:
El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.
Resumo:
Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.
Resumo:
Con este material pretendemos divulgar la matemática implicada en los números de identificación tales como NIF, ISBN, EAN... La aritmética modular se utiliza para lijar el dígito de control, y algoritmos sencillos permiten al ordenador descubrir muchas falsificaciones o posibles errores en el número de identificación de la tarjeta, producto o persona. Los esquemas de codificación más usuales detectan todos los errores simples, esto es, cuando se confunde un dígito por otro pero, sin embargo, no descubren otros tipos de errores que, aunque son menos frecuentes, son posibles. El álgebra y la divisibilidad ayudan a elegir esquemas de codificación mas seguros.
Resumo:
En la historia de la probabilidad encontramos diferentes paradojas que permiten al profesor organizar actividades didácticas en la enseñanza y el aprendizaje. Como ejemplo, en este trabajo analizamos la paradoja del niño o niña, su historia, algunas variantes, soluciones, objetos matemáticos trabajados y dificultades de los estudiantes, tales como la sesgo de equiprobabilidad y confusión entre probabilidad condicional y conjunta.
Resumo:
El taller pretende utilizar la simulación, en Fathom, GeoGebra y Excel con el fin de desarrollar el pensamiento instintivo y confrontarlo con el pensamiento analítico en el estudio de las distribuciones y probabilidades condicionales, y que lo anterior ayude a resolver problemas considerados controversiales de probabilidad. Los participantes trabajarán con actividades guiadas, podrán apreciar la riqueza didáctica de la simulación hecha con paquetes dinámicos y comparar las potencialidades que cada uno ofrece en la solución de diversos problemas.
Resumo:
Cette thèse pose la question de la fortune remarquable du surréalisme en Belgique et porte particulièrement attention à la poétique de Christian Dotremont qui, après une période surréaliste, trace le premier logogramme en 1962. La partie initiale de notre recherche interroge ses rapports avec le groupe surréaliste bruxellois (Paul Nougé et René Magritte), préoccupé par le refus de l’œuvre. Cette démarche subversive se transforme dans l’art expérimental du groupe Cobra (communauté artistique fondée en 1948 par Dotremont). Nous nous intéressons à cette évolution d’une préoccupation logocentrique (où le mot compte pour le contenu qu’il véhicule : il s’agit de la poétique « primitive » de Nougé et des objets bouleversants de Magritte) vers l’exploration du mot comme trace, comme scription et, par là même, comme source de poésie. La deuxième partie de notre recherche traite de l’époque Cobra où se forge ce que nous appelons la poétique du visible chez Dotremont dont le résultat est la découverte du pouvoir créatif du mot en tant que matière, en tant que trace manuscrite. Ces expérimentations centrées sur la matérialité du langage préparent le cheminement artistique de Dotremont vers l’invention du logogramme (objet d’analyse de la troisième partie de la thèse). Dans l’idée d’une légitimation du logogramme en tant que nouveau genre poético-pictural, nous relevons ses invariants créateurs : sans pour autant se soumettre au modèle pictural, celui-ci n’est ni peinture des mots, ni mot-tableau, il exploite la matérialité de la lettre comme source poétique : genre transfrontalier qui ne cesse de mettre en question et d’inclure dans sa cinétique la métamorphose de sa réception.
Resumo:
Material multicopiado con la colaboración del CPR Murcia II
Resumo:
Material multicopiado con la colaboración del CPR Murcia II
Resumo:
Seleccionado en la convocatoria: Concurso de proyectos de cooperación en materia de investigación entre departamentos universitarios y departamentos de Institutos de Educación Secundaria o equipos de personal docente, Gobierno de Aragón 2009-10
Resumo:
Seleccionado en la convocatoria: Concurso de proyectos de cooperación en materia de investigación entre departamentos universitarios y departamentos de Institutos de Educación Secundaria o equipos de personal docente, Gobierno de Aragón 2010-2011
Resumo:
Seleccionado en la convocatoria: Ayudas para proyectos de temática educativa, Gobierno de Aragón 2011-12