947 resultados para Average temperature
Resumo:
This study aimed to explore the spatiotemporal patterns, geographic co-distribution, and socio-ecological drivers of childhood pneumonia and diarrhea in Queensland. A Bayesian conditional autoregressive model was used to quantify the impacts of socio-ecological factors on both childhood pneumonia and diarrhea at a postal area level. A distinct seasonality of childhood pneumonia and diarrhea was found. Childhood pneumonia and diarrhea mainly distributed in northwest of Queensland. Mount Isa was the high-risk cluster where childhood pneumonia and diarrhea co-distributed. Emergency department visits (EDVs) for pneumonia increased by 3% per 10-mm increase in monthly average rainfall, in wet seasons. In comparison, a 10-mm increase in monthly average rainfall may increase 4% of EDVs for diarrhea. Monthly average temperature was negatively associated with EDVs for childhood diarrhea, in wet seasons. Low socioeconomic index for areas (SEIFA) was associated with high EDVs for childhood pneumonia. Future pneumonia and diarrhea prevention and control measures in Queensland should focus more on Mount Isa.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the Northwest of Mexico at Centro de Investigaciones Agrícolas del Noroeste (CIANO) and sites across Australia during three seasons. During three consecutive years Australia received “shipments” of different SBWs from CIMMYT for evaluation. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. These consisted of approximately 100 advanced lines (F7) per year. SBWs had been top and backcrossed to CIMMYT cultivars in the first two shipments and to Australian wheat cultivars in the third one. At CIANO, the SBWs were trialled under receding soil moisture conditions. We evaluated both the performance of each line across all environments and the genotype-by-environment interaction using an analysis that fits a multiplicative mixed model, adjusted for spatial field trends. Data were organised in three groups of multienvironment trials (MET) containing germplasm from shipment 1 (METShip1), 2 (METShip2), and 3 (METShip3), respectively. Large components of variance for the genotype × environment interaction were found for each MET analysis, due to the diversity of environments included and the limited replication over years (only in METShip2, lines were tested over 2 years). The average percentage of genetic variance explained by the factor analytic models with two factors was 50.3% for METShip1, 46.7% for METShip2, and 48.7% for METShip3. Yield comparison focused only on lines that were present in all locations within a METShip, or “core” SBWs. A number of core SBWs, crossed to both Australian and CIMMYT backgrounds, outperformed the local benchmark checks at sites from the northern end of the Australian wheat belt, with reduced success at more southern locations. In general, lines that succeeded in the north were different from those in the south. The moderate positive genetic correlation between CIANO and locations in the northern wheat growing region likely reflects similarities in average temperature during flowering, high evaporative demand, and a short flowering interval. We are currently studying attributes of this germplasm that may contribute to adaptation, with the aim of improving the selection process in both Mexico and Australia.
Resumo:
In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.
Resumo:
The frequencies and variable-temperature behaviour of 35Cl nuclear quadrupole resonance in three aminocyclophosphazene derivatives are reported. The observed frequencies and multiplicity are correlated with the disposition of the substituents and the crystal structure. The temperature-dependence data are discussed in the framework of Bayer-Kushida-Brown equations and low-lying torsional (librational) frequencies and their average temperature coefficients are estimated. Brown's parabolic equation provides a good fit to the experimental data. Variable-temperature proton FT-NMR measurements (at 270 MHz) have also been carried out. The results are consistent with the NQR data and indicate the presence of two-site chemical exchange of the -NH protons and hydrogen bonding.
Resumo:
Apples at 24 ± 2 °C were heated in a pilot scale hot air assisted (40 °C) continuous pentagonal microwave system, to evaluate the effectiveness of this treatment on insect mortality (variety Mutsu) and fruit quality (variety Granny Smith). An average temperature of 53.4 ± 1.3 °C at core, bottom and flesh of the apple was recorded at the end of the treatment. One hundred percent mortality of the most tolerant stage of Queensland fruit fly (Bactrocera tryoni, Froggatt) and Jarvis's fruit fly (Bactrocera jarvisi, Tryon), were observed when the Mortality value (M52, equivalent time of isothermal treatment at 52 °C) at the slowest heating point applicable for each experiment was ≥ 50 min and ≥ 37 min, respectively. Results showed that microwave heat treatment is effective for insect disinfestation without any adverse impact on total soluble solids, flesh or peel firmness of the treated apples. The treated apples recorded a significantly higher pH and lower ion leakage than the untreated apples after 3 or 4 weeks. Therefore, the microwave heat treatment has the potential to be developed as an alternative chemical free quarantine treatment against economically significant insect pests. Industrial relevance Hot air assisted microwave heating of fruits and vegetables, is more cost effective compared to vapour heat treatment and ionising radiation for disinfestation of insects. Microwave treatment is environmentally friendly compared to fumigation and chemical treatments. Hot air assisted microwave disinfestation can be performed at farms or centralised pack houses since the capital cost would be comparatively lower than vapour heat or ionising radiation treatments.
Resumo:
With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.
Resumo:
In this article, a general definition of the process average temperature has been developed, and the impact of the various dissipative mechanisms on 1/COP of the chiller evaluated. The present component-by-component black box analysis removes the assumptions regarding the generator outlet temperature(s) and the component effective thermal conductances. Mass transfer resistance is also incorporated into the absorber analysis to arrive at a more realistic upper limit to the cooling capacity. Finally, the theoretical foundation for the absorption chiller T-s diagram is derived. This diagrammatic approach only requires the inlet and outlet conditions of the chiller components and can be employed as a practical tool for system analysis and comparison. (C) 2000 Elsevier Science Ltd and IIR. All rights reserved.
Resumo:
Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We begin by providing observational evidence that the probability of encountering very high and very low annual tropical rainfall has increased significantly in the most recent decade (1998-present) compared with the preceding warming era (1979-1997). These changes over land and ocean are spatially coherent and comprise a rearrangement of very wet regions and a systematic expansion of dry zones. While the increased likelihood of extremes is consistent with a higher average temperature during the pause (compared with 1979-1997), it is important to note that the periods considered are also characterized by a transition from a relatively warm to a cold phase of the El Nino Southern Oscillation (ENSO). To probe the relation between contrasting phases of ENSO and extremes in accumulation further, a similar comparison is performed between 1960 and 1978 (another extended cold phase of ENSO) and the aforementioned warming era. Though limited by land-only observations, in this cold-to-warm transition, remarkably, a near-exact reversal of extremes is noted both statistically and geographically. This is despite the average temperature being higher in 1979-1997 compared with 1960-1978. Taking this evidence together, we propose that there is a fundamental mode of natural variability, involving the waxing and waning of extremes in accumulation of global tropical rainfall with different phases of ENSO.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
Various hazardous wastes with additives have been vitrified to investigate the formation mechanism of the glassy slag by a 30 kW DC plasma-arc reactor developed by the Institute of Mechanics, Chinese Academy of Sciences. The average temperature in the reaction area is controlled at 1500°C. The chemical compositions of three sorts of fly ashes are analyzed by XRF (X-Ray Fluorescence). Fly ashes with vitrifying additives can be vitrified to form glassy slag, which show that the ratio of the whole oxygen ions to the whole network former ions in glass (R) is appropriate in the range of 2~3 to form durable vitrified slag. In this experiment, the arc power is controlled below 5 kW to inhibit waste evaporation. To enhance the effects of heat transfer to wastes, ferrous powder has been added into the graphite crucible, which aggregates as ingot below the molten silicate after vitrification. The slag fails to form glass if the quenching rate is less than 1 K/min. Therefore, the slag will break into small chips due to the sharp quenching rate, which is more than 100 K/sec.
Resumo:
An article detailing some of the conclusions of the salmon investigation undertaken by the author, on the River Eden and its tributaries, for the previous few years. It is proposed that seasonal changes in young salmon growth are related to water temperature variation. A figure is included showing length of fish compared to the average temperature of water in the River Eden over a two year duration. The article describes comparative work undertaken to date between three streams within the Thurso watershed and the River Eden. A table is included showing the average size of fish in each of the watercourses compared. Laboratory experiments on the effects of temperature on young salmon are outlined, as well as investigative work undertaken into the realtionship between fish scales and fish length.
Resumo:
[ES]Se ha estudiado la variabilidad de la temperatura en la Cornisa Cantábrica en el periodo 1928-2013 analizando los índices de la temperatura máxima, mínima y media, el rango diario de temperaturas y el número de días de helada. Asimismo se ha analizado la influencia que tiene el índice NAO sobre la temperatura. Para su evaluación se han utilizado las bases de datos de catorce observatorios atmosféricos, un observatorio marítimo y el índice NAO mensual de Hurrell. Se ha observado que la temperatura de la Cornisa Cantábrica ha aumentado sobre todo en las últimas cuatro décadas, siendo mayor el incremento de la temperatura máxima que el de la mínima (1973-2013). Además, la temperatura marítima del Este del mar Cantábrico ha ascendido a un ritmo de 0,197°C dec-1. El índice NAO no muestra relación con la variabilidad de la temperatura.
Resumo:
Machaerium é um dos maiores gêneros arbóreos tropicais de leguminosas, com cerca de 130 espécies com distribuição predominantemente neotropical e centro de diversidade no Brasil, onde ocorrem cerca de 80 espécies. O gênero ocorre em todos os domínios fitogeográficos do país, porém a Mata Atlântica e a Floresta Amazônica possuem os maiores índices de riqueza e endemismo. As espécies do gênero estão classificadas em cinco seções infragenéricas, que se baseiam principalmente na forma e venação dos folíolos e na presença de estípulas espinescentes. Entretanto, esta classificação tem sido questionada por alguns autores, principalmente quando comparada com análises filogenéticas. Dessa forma, surge a necessidade de buscar outros caracteres que auxiliem na delimitação das espécies e que permitam uma reavaliação na classificação nfragenéricas, além de conhecer o potencial para estudos dendrocronológicos das espécies em um bioma tão rico e ameaçado como a Mata Atlântica. O presente trabalho visou estudar a anatomia do lenho de onze espécies arbóreas de Machaerium a fim de verificar a consistência das seções infragenéricas, fornecer caracteres diagnósticos para a delimitação das espécies e caracterizar as pontoações intervasculares ornamentadas, para verificar seu potencial diagnóstico no gênero em questão. Além disso, analisar a periodicidade de crescimento e a influência dos fatores climáticos no crescimento de Machaerium incorruptibile, espécie endêmica da Mata Atlântica. As amostras foram coletadas através de método não destrutivo e processadas seguindo os métodos usuais para anatomia do lenho, microscopia eletrônica de varredura e dendrocronologia. As espécies apresentaram as características anatômicas descritas para a família Leguminosae e para a subfamília Papilionoideae. A presença de faixas de parênquima não lignificado, fibras de paredes delgadas e raios irregularmente estratificados foram importantes na separação de Machaerium hirtum das outras dez espécies. As dez espécies restantes foram separadas entre si pelos dados quantitativos do lenho, principalmente diâmetro e frequência de vasos, e também pelos caracteres morfológicos das pontoações ornamentadas, como a projeção ou não das ornamentações na abertura da pontoação. A anatomia da madeira não correspondeu as seções infragenéricas tradicionalmente tratadas para o gênero. Para a dendrocronologia os dados foram analisados com uso do software ARSTAN e foi construída uma cronologia para M. incorruptibile. As cronologias foram analisadas juntamente com os dados de precipitação e temperatura, onde observou-se uma correlação significativa com a temperatura. A largura dos anéis de crescimento foi correlacionada positivamente com a temperatura média da primavera, época em que a temperatura se encontra mais amena e, negativamente com a temperatura média do verão, onde as temperaturas são mais altas. Também houve correlação negativa entre os eventos mais severos de El Niño e a largura dos anéis de crescimento, demonstrando o efeito deste fenômeno no crescimento da população arbórea, como encontrado em outras espécies tropicais.