992 resultados para 3D MOLECULAR DESCRIPTORS
Resumo:
Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain.
Resumo:
Quantitative structure activity relationships (QSARs) have been developed to optimise the choice of nitrogen heterocyclic molecules that can be used to separate the minor actinides such as americium(III) from europium(III) in the aqueous PUREX raffinate of nuclear waste. Experimental data on distribution coefficients and separation factors (SFs) for 47 such ligands have been obtained and show SF values ranging from 0.61 to 100. The ligands were divided into a training set of 36 molecules to develop the QSAR and a test set of 11 molecules to validate the QSAR. Over 1500 molecular descriptors were calculated for each heterocycle and the Genetic Algorithm was used to select the most appropriate for use in multiple regression equations. Equations were developed fitting the separation factors to 6-8 molecular descriptors which gave r(2) values of >0.8 for the training set and values of >0.7 for the test set, thus showing good predictive quality. The descriptors used in the equations were primarily electronic and steric. These equations can be used to predict the separation factors of nitrogen heterocycles not yet synthesised and/or tested and hence obtain the most efficient ligands for lanthanide and actinide separation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Chagas disease is nowadays the most serious parasitic health problem. This disease is caused by Trypanosoma cruzi. The great number of deaths and the insufficient effectiveness of drugs against this parasite have alarmed the scientific community worldwide. In an attempt to overcome this problem, a model for the design and prediction of new antitrypanosomal agents was obtained. This used a mixed approach, containing simple descriptors based on fragments and topological substructural molecular design descriptors. A data set was made up of 188 compounds, 99 of them characterized an antitrypanosomal activity and 88 compounds that belong to other pharmaceutical categories. The model showed sensitivity, specificity and accuracy values above 85%. Quantitative fragmental contributions were also calculated. Then, and to confirm the quality of the model, 15 structures of molecules tested as antitrypanosomal compounds (that we did not include in this study) were predicted, taking into account the information on the abovementioned calculated fragmental contributions. The model showed an accuracy of 100% which means that the ""in silico"" methodology developed by our team is promising for the rational design of new antitrypanosomal drugs. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 882-894. 2010
Resumo:
This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.
Resumo:
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Multivariate image analysis applied to the quantitative structure-activity relationships (MIA-QSAR) is a 2D QSAR technique that has been presenting promising outcomes for the development of new drug candidates, due to its simplicity, rapidity and low cost. In this way, the present study aims at introducing, consolidating and improving the new dimensions named aug-MIA-QSAR and aug-MIA-QSARcolor, as well as applying them to the study of neglected diseases, in order to obtain new drug targets using chemico-biological interpretation of the MIA molecular descriptors. Four compound data sets with experimental bioactivities against Chagas disease, malaria, dengue and schistosomiasis were evaluated using three approaches: MIA-QSARt, aug-MIA-QSAR and aug-MIA-QSARcolor. In general, representations of atoms as spheres with different colors and sizes proportional to the corresponding van der Waals radii (aug-MIA approaches) improved the predictive ability and interpretability in all data sets. The use of colors proportional to the Pauling´s electronegativity showed that MIA descriptors are capable of identifying periodic properties relevant for the studied activity. Finally, solid colors instead of spotlighted atoms allowed a correct identification of atoms by means of pixel values in the studies for malaria, dengue and schistosomiasis, which were, subsequently, useful for the chemical interpretation related to the bioactivity. It can be inferred that semicarbazones and thiosemicarbazones derivative with a tri-substituted ring in R1 group and a trifluoro methyl group in the R 3 position instead of a chlorine antitripanossoma resulted in higher activity. The antimalarial activity of quinolon-4(1H)imines can be improved if: 1) R1 and R2 are electron donor groups, 2) R3 has long aminoalkyl chains, and 3) R4 possesses substituents with big atomic volume. In the study for dengue, it was found that tetrapeptides with unbranched small size amino acids in the A1 and A4 positions can increase the substrate affinity (Km) to the NS3 protein, and when in A1 and A2 positions, the substrate cleavage rate (kcat). On the other hand, acidic amino acids in the A2 and A4 positions were found to be related with low substrate affinity to the NS3 protein and when present in A1, with low substrate cleavage rate. Finally, the presence of metoxy substituents in R1 (or R2) and R5 in the neolignan backbone can favor their antischistosomal activity.
Resumo:
A síntese e a estrutura cristalina por difração de raios-X de dois análogos de neolignanas, 2-(4-clorofenil)-1-feniletanona (20) e 2-[tio(4-clorofenil)]-1-(3,4-dimetoxifenil)propan-1-ona (12) são descritas. O composto 12 apresenta atividade intracelular contra Leishmania donovani e Leishmania amazonensis de amastigotas que causam a leishmaniose tegumentar e visceral. Além disso, a teoria do funcional de densidade (DFT) com o funcional híbrido B3LYP foi empregado para calcular um conjunto de descritores moleculares para dezenove análogos sintéticos de neolignanas com atividades antileishmaniose. Posteriormente, a análise discriminante stepwise foi realizada para investigar possíveis relações entre a estrutura molecular e atividades biológicas. Por meio dessa análise os compostos foram classificados em dois grupos ativos e inativos de acordo com seu grau de atividade biológica, e as propriedades mais importantes foram as cargas de alguns átomos, a afinidade eletrônica e o ClogP.
Resumo:
Métodos quimiométricos (estatísticos) são empregados para classificar um conjunto de compostos derivados de neolignanas com atividade biológica contra a Paracoccidioides brasiliensis. O método AM1 (Austin Model 1) foi utilizado para calcular um conjunto de descritores moleculares (propriedades) para os compostos em estudo. A seguir, os descritores foram analisados utilizando os seguintes métodos de reconhecimento de padrões: Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos (HCA) e o método de K-vizinhos mais próximos (KNN). Os métodos PCA e HCA mostraram-se bastante eficientes para classificação dos compostos estudados em dois grupos (ativos e inativos). Três descritores moleculares foram responsáveis pela separação entre os compostos ativos e inativos: energia do orbital molecular mais alto ocupado (EHOMO), ordem de ligação entre os átomos C1'-R7 (L14) e ordem de ligação entre os átomos C5'-R6 (L22). Como as variáveis responsáveis pela separação entre compostos ativos e inativos são descritores eletrônicos, conclui-se que efeitos eletrônicos podem desempenhar um importante papel na interação entre receptor biológico e compostos derivados de neolignanas com atividade contra a Paracoccidioides brasiliensis.
Resumo:
O método do orbital molecular AM1 foi empregado para calcular um conjunto de descritores moleculares para vinte neolignanas sintéticas com atividade anti-esquistossomose. O método de reconhecimento de padrão (análise de componentes principais ACP, análise de conglomerados AC e análise de discriminante) foi utilizado para obter a relação entre a estrutura molecular e a atividade biológica. O conjunto de moléculas foi classificado em dois grupos de acordo com seus graus de atividade biológica. Estes resultados permitem que, projete-se racionalmente novos compostos, potenciais candidatos à síntese e à avaliação biológica.
Resumo:
Um conjunto de dezoito compostos de neolignanas com atividade antiesquistossomose foi estudado com o método semi-empírico PM3 e outros métodos teóricos com o intuito de avaliar algumas propriedades (variáveis ou descritores) moleculares selecionadas e correlacioná-las com a atividade biológica. Análise exploratória dos dados (análise de componentes principais, PCA, e análise hierárquica de agrupamentos, HCA), análise discriminante (DA) e o método KNN foram utilizados na obtenção de possíveis correlações entre os descritores calculados e a atividade biológica em questão e na predição da atividade antiesquistossimose de algumas moléculas teste. Os descritores moleculares responsáveis pela separação entre os compostos ativos e inativos foram: energia de hidratação (HE), refratividade molecular (MR) e carga sobre o átomo C19 (Q19). Estes descritores fornecem informações a respeito do tipo de interação que pode ocorrer entre os compostos e seu respectivo receptor biológico. Após a construção do modelo para compostos ativos e inativos, os métodos PCA, HCA, DA e KNN foram empregados em um estudo de predição. Foram estudados 10 novos compostos e somente 5 deles foram classificados como ativos contra esquistossomose.
Resumo:
The aim of this study was to classify some markers of common herbs used in Western medicine according to the Biopharmaceutical Classification System (BCS). The BCS is a scientific approach to classify drug substances based upon their intestinal permeability and their solubility, at the highest single dose used, within the physiologically relevant pH ranges. Known marker components of twelve herbs were chosen from the USP Dietary Supplement Compendium Monographs. Different BCS parameters such as intestinal permeability (P-eff) and solubility (C-s) were predicted using the ADMET Predictor, which is a software program to estimate biopharmaceutical relevant molecular descriptors. The dose number (D-0) was calculated when information from the literature was available to identify an upper dose for individual markers. In these cases the herbs were classified according to the traditional BCS parameters using Peff and Do. When no upper dose could be determined, then the amount of a marker that is just soluble in 250 mL of water was calculated. This value, M-x, defines when a marker is changing from highly soluble to poorly soluble according to BCS criteria. This biopharmaceutically relevant value can be a useful tool for marker selection. The present study showed that a provisional BCS classification of herbs is possible but some special considerations need to be included into the classification strategy. The BCS classification can be used to choose appropriate quality control tests for products containing these markers. A provisional BCS classification of twelve common herbs and their 35 marker compounds is presented.
Resumo:
Peroxisome-proliferator-activated receptors are a class of nuclear receptors with three subtypes: a, ? and d. Their main function is regulating gene transcription related to lipid and carbohydrate metabolism. Currently, there are no peroxisome-proliferator-activated receptors d drugs being marketed. In this work, we studied a data set of 70 compounds with a and d activity. Three partial least square models were created, and molecular docking studies were performed to understand the main reasons for peroxisome-proliferator-activated receptors d selectivity. The obtained results showed that some molecular descriptors (log P, hydration energy, steric and polar properties) are related to the main interactions that can direct ligands to a particular peroxisome-proliferator-activated receptors subtype.
Resumo:
A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.
Resumo:
Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.