957 resultados para ion mobility spectrometry
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
The aim of this work is to propose a biomonitoring method for the simultaneous determination of Cd and Pb in whole blood by simultaneous electrothermal atomic absorption spectrometry for assessment of environmental levels. A volume of 200 mu L of whole blood was diluted in 500 mu L of 0.2% (w v(-1)) Triton(R) X-100 + 2.0% (v v(-1)) HNO3. Trichloroacetic acid was added for protein precipitation and the supernatant analyzed. A mixture of 250 mu g W + 200 mu g Rh as permanent and 2.0% (w v(-1)) NH4H2PO4 as co-injected modifiers were used. Characteristic masses and limits of detections (n = 20, 3s) for Cd and Pb were 1.26 and 33 pg and 0.026 mu g L-1 and 0.65 mu g L-1, respectively. Repeatability ranged from 1.8 to 6.8% for Cd and 1.2 to 1.7% for Pb. The trueness of method was checked by the analysis of three Reference Materials: Lyphocheck(R) Whole Blood Metals Control level 1 and Seronorm(TM) Trace Elements in Whole Blood levels 1 and 2. The found concentrations presented no statistical differences at the 95% confidence level. Blood samples from 40 volunteers without occupational exposure were analyzed and the concentrations ranged from 0.13 to 0.71 mu g L-1 (0.32 +/- 0.19 mu g L-1) for Cd and 9.3 to 56.7 mu g L-1 (25.1 +/- 10.8 mu g L-1) for Pb. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The polymetallic [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru( bpy)(2)Cl](PF(6))(2) complex (bpy = 2,2`-bipyridine, BPE = trans- 1,2-bis(4-pyridil) ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru(3)O] moiety with a [ Ru( bpy) 2( BPE) Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru(bpy)(2)Cl] (2+) doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)(2)(BPE)] charge-transfer bands and to the [Ru(3)O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at - 1.07 V, 0.13 V, 1.17 V, 2.91 V and - 1.29 V (vs SHE) assigned to the [Ru(3)O](-1/0/+ 1/+ 2/+3) and to the bpy (0/-1) redox processes; also a wave is observed at 0.96 V, assigned to the Ru (+2/+ 3) pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the pi-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.
Resumo:
Disproportionation reactions take place in solution of (diacetoxyiodo)benzene (DIB) in acetonitrile in the presence of water, giving iodine(V) and iodine(l) species. This redox reaction is accelerated by the presence of water and by increasing the temperature. Several species of the solution of DIB were identified by high-resolution ESI-MS/MS, which allowed the elucidation of the mechanisms of disproportionation for DIB in gas phase and in solution. Key species in the process are the dimers [PhI(CH)OlPh](+) at m/z 440.8864, [PhI(OAc)OlPh](+) at m/z 482.8947, and [PhI(O)(OAc)OlPh](+) at m/z 498.8887. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A high-performance liquid chromatographic method with triple-quadrupole mass spectrometry detection (LC-MS-MS) was developed and validated for the first time for the simultaneous quantification of zopiclone and its metabolites in rat plasma samples. The analytes were isolated from rat plasma by liquid-liquid extraction and separated using a chiral stationary phase based on an amylose derivative, Chiralpak ADR-H column, and ethanol-methanol-acetonitrile (50:45:5, v/v/v) plus 0.025% diethylamine as the mobile phase, at a flow-rate of 1.0 mL min(-1). Moclobemide was used as the internal standard. The developed method was linear over the concentration range of 7.5-500 ng mL(-1). The mean absolute recoveries were 74.6 and 75.7; 61.6 and 56.9; 72.5, and 70.7 for zopiclone enantiomers, for N-desmethyl zopiclone enantiomers and for zopiclone-N-oxide enantiomers, respectively, and 75.9 for the internal standard. Precision and accuracy were within acceptable levels of confidence (<15%). The method application in a pilot study of zopiclone kinetic disposition in rats showed that the levels of (+)-(S)-zopiclone were always higher than those of (-)-R-zopiclone. Higher concentrations were also observed for (+)-(S)-N-desmethyl zopiclone and (+)-(S)-N-oxide zopiclone, confirming the stereoselective disposition of zopiclone.
Resumo:
Microcystins (MC) are a family of hepatotoxic cyclic heptapeptides produced by a number of different cyanobacterial species. Considering the recent advances in the characterization of deprotonated peptides by mass spectrometry, the fragmentation behavior of four structurally related microcystin compounds was investigated using collision-induced dissociation (CID) experiments on an orbitrap mass spectrometer. It is demonstrated in this study that significant structural information can be obtained from the CID spectra of deprotonated microcystins. A predominant ring-opening reaction at the isoMeAsp residue, as well as two major complementary fragmentation pathways, was observed, reducing the complexity of the product ion spectra in comparison with spectra observed from protonated species. This proposed fragmentation behavior was applied to characterize [Leu(1)]MC-LR from a cyanobacterial cell extract. In conclusion, CID spectra of microcystins in the negative ion mode provide rich structurally informative mass spectra which greatly enhance confidence in structural assignments, in particular when combined with complementary positive ion CID spectra. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
Resumo:
A method for the determination of artemether (ART) and its main metabolite dihydroartemisinin (DHA) in plasma employing liquid-phase microextraction (LPME) for sample preparation prior to liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed. The analytes were extracted from 1 nil, of plasma utilizing a two-phase LPME procedure with artemisinin as internal standard. Using the optimized LPME conditions, mean absolute recovery rates of 25 and 32% for DHA and ART, respectively, were achieved using toluene-n-octanol (1:1, viv) as organic phase with an extraction time of 30 min. After extraction, the analytes were resolved within 5 min using a mobile phase consisting of methanol-ammonium acetate (10 mmol L(-1) pH 5.0, 80:20. v/v) on a laboratory-made column based on poly(methyltetradecylsiloxane) attached to a zirconized-silica support. MS-MS detection was employed using an electrospray interface in the positive ion mode. The method developed was linear over the range of 5-1000 ng mL(-1) for both analytes. Precision and accuracy were within acceptable levels of confidence (<15%). The assay was applied to the determination of these analytes in plasma from rats treated with ART. The two-phase LPME procedure is affordable and the solvent consumption was very low compared to the traditional methods of sample preparation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The beta-carbolines 1-methyl-9H-pyrido [3,4-b]indole and 9H-pyrido[3,4b]indole have been implicated as having causative roles in a number of human diseases, such as Parkinson`s disease and cancer. As they can be formed during the heating of protein-rich food, a number of analytical methodologies have been proposed for their detection and quantification in foodstuff For this purpose, LC-MS and LC-MS/MS have emerged as the most specific analytical methods, and the quantification is based on the occurrence of unusual ions, such as [M+H-(H(center dot))](+) and [M + H-2H](+). In this study, we have investigated the formation of these ions by accurate-mass electrospray MS/MS and demonstrated that these ions are formed from gas-phase ion-molecule reactions between water vapor present in the collision cell and the protonated molecule of 1-methyl-9H-pyrido [3,4-b]indole and 9H-pyrido[3,4b]indole. Although this reaction has been previously described for heterocyclic amine ions, it has been overlooked in the most of recent LC-MS and LC-MS/MS studies, and no complete data of the fragmentation are reported. Our results demonstrate that additional attention should be given with respect to eliminating water vapor residues in the mass spectrometer when analysis of beta-carbolines is performed, as this residue may affect the reliability in the results of quantification.
Resumo:
Photolysis of the nitrato chromium(III) tetraphenylporphyrinato compound Cr(TPP)(NO(3)) (TPP, tetraphenylporphyrin) in toluene solution clearly leads to the formation of the Cr(IV) oxo complex Cr(TPP)(O) with a quantum yield of 0.011. The other product, NO(2), was detected quantitatively by its reaction with the spin trapping agent 2,2,6,6-tetramethyl-piperidine-1-oxyl.
Resumo:
The quenching of the triplet state of three n-alkyl 3-nitrophenyl ethers: 3-nitroanisol (3-NA), n-butyl 3-nitrophenyl ether (3-NB) and n-decyl 3-nitrophenyl ether (3-ND) by four aniline derivatives: aniline (AN), N,N-dimethylaniline (DMA), 2,4,6-trimethylaniline (TMA), and 4-tetradecylaniline (TDA), was investigated in aqueous micellar SDS solutions by laser flash photolysis. The transient absorption spectra for 3-NA and 3-NB reveal the formation of long-lived intermediate species in the presence of all four quenchers. while for 3-ND no amine-induced intermediates are observed. Comparison of the transient absorption spectra of the probe 3-NA in the presence of DMA in aqueous and micellar solutions shows that the intermediate species are favored by the SDS micelles. With DMA and TMA as quenchers the intermediates are suggested to be the ion radicals generated by single electron transfer from the amine to the probe in the triplet excited state. For the quenchers AN and TDA, the intermediates may be a-complexes. The relative quenching efficiencies generally decrease as the affinity of the quencher for the micellar phase (AN < DMA < TMA < TDA) increases and the mobility of the excited probe (3-NA > 2-NB) decreases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.
Resumo:
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca(2+)-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys(56) relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca(2+) and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca(2+) interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys(56) residue increasing its relative mobility. The binding of ADP that stabilizes the conformation ""m"" of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys(56), accounting for reducing its relative mobility. The results suggest that Ca(2+) binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys(56) relative mobility and that this may constitute a potential critical step of Ca(2+)-induced PTP opening. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there area limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 mu L) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCI was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) L-cysteine, 0.06 mol L(-1) ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 mu g L(-1) and 0.1 mu Lg L(-1) for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury. (C) 2009 Elsevier B.V. All rights reserved.