873 resultados para doped-Er3 glass microsphere
Resumo:
In this paper we present results on phosphorous-doped c-Si:H by catalytic chemical vapour deposition in a reactor with an internal arrangement that does not include a shutter. An incubation phase of around 20 nm seems to be the result of the uncontrolled conditions that take place during the first stages of deposition. The optimal deposition conditions found lead to a material with a dark conductivity of 12.8 S/cm, an activation energy of 0.026 eV and a crystalline fraction of 0.86. These values make the layers suitable to be implemented in solar cells.
Resumo:
In this paper we present new results on doped c-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers.
Resumo:
Epitaxial thin films of Ydoped SrZrO3 have been grown on MgO(001) by pulsed laser deposition. The deposition process has been performed at temperatures of 10001200C and at an oxygen pressure of 1.5101 mbar. The samples are characterized by Rutherford backscattering spectrometry/channeling (RBS/C) and xray diffraction (XRD). We found an epitaxial relationship of SrZrO3 (0k0) [101]MgO (001) [100]. Good crystalline quality is confirmed by RBS/C minimum yield values of 9% and a FWHM of 0.35 of the XRD rocking curve.
Resumo:
We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
Resumo:
We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
Resumo:
We report here on the magnetic properties of compounds of composition Fe1xCrxSbO4 and Fe1xGaxSbO4. The introduction of paramagnetic Cr3+ and diamagnetic Ga3+ into the rutilerelated iron antimonate lattice does not destroy the antisite atomic ordering which exists in iron antimonate of composition FeSbO4. The initial slope of the Curie temperature dependence on x is similar in both series, indicating that Fe3+Cr3+ interactions are very small. The magnetic susceptibility measurements recorded from the compounds of composition Fe1xCrxSbO4, x<0.4, and Fe0.9Ga0.1SbO4 show them to behave as spin glasses at low temperatures. The inhibition of compounds of the type Fe1xCrxSbO4, x>0.4, and Fe1xGaxSbO4, x>0.1 to undergo a spinglass transition above 4.2 K is associated with a dilution effect.