Fragile-glass behavior of a short-range p-spin model


Autoria(s): Álvarez, Diego; Franz, Silvio; Ritort Farran, Fèlix
Contribuinte(s)

Universitat de Barcelona

Data(s)

04/05/2010

Resumo

We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.

Identificador

http://hdl.handle.net/2445/10859

Idioma(s)

eng

Publicador

The American Physical Society

Direitos

(c) The American Physical Society, 1996

info:eu-repo/semantics/openAccess

Palavras-Chave #Vidres de spin #Dinàmica de fluids #Regla de les fases i equilibri #Spin glasses #Fluid dynamics #Phase rule and equilibrium
Tipo

info:eu-repo/semantics/article