571 resultados para Tester
Resumo:
The effect of solutions of 0.2% chitosan, 15% EDTA and 10% citric acid on the microhardness of root dentin was evaluated comparatively in this study. Thirteen sound human maxillary central incisors were selected and decoronated at the cementoenamel junction. Ten roots were set into rapid polymerization acrylic resin and the root/resin block was fitted to the cutting machine to obtain slices from the cervical third. The first slice was discarded and the second slice was divided into four quadrants. Each quadrant was used to construct a sample, so that 4 specimens were obtained from each root slice, being one for each chelating solution to be tested: 15% EDTA, 10% citric acid, 0.2% chitosan and distilled water (control). The specimens were exposed to 50 μL of the solution for 5 min, and then washed in distilled water. A microhardness tester (Knoop hardness) with a 10 g load was used for 15 s. Data were analyzed statistically by one-way ANOVA and Tukey-Kramer test (α=0.05). The other 3 roots had the canals instrumented and irrigated at the end of the biomechanical preparation with the test solutions, and then examined by scanning electron microscopy (SEM) for qualitative analysis. All solutions reduced the microhardness of root dentin in a way that was statistically similar to each other (p>0.05) but significantly different from the control (p>0.05). The SEM micrographs showed that the three solutions removed smear layer from the middle third of the root canal. In conclusion, 0.2% chitosan, 15% EDTA and 10% citric acid showed similar effects in reducing dentin microhardness.
Resumo:
This study evaluated the effect of artificially accelerated aging (AAA) on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05), ANOVA and Tukey test (p < 0.05). With regard to hardness (F = 86.74, p < 0.0001) the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53). In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002). It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.
Resumo:
The purpose of this study is to evaluate the influence of the cutting parameters of high-speed machining milling on the characteristics of the surface integrity of hardened AISI H13 steel. High-speed machining has been used intensively in the mold and dies industry. The cutting parameters used as input variables were cutting speed (v c), depth of cut (a p), working engagement (a e) and feed per tooth (f z ), while the output variables were three-dimensional (3D) workpiece roughness parameters, surface and cross section microhardness, residual stress and white layer thickness. The subsurface layers were examined by scanning electron and optical microscopy. Cross section hardness was measured with an instrumented microhardness tester. Residual stress was measured by the X-ray diffraction method. From a statistical standpoint (the main effects of the input parameters were evaluated by analysis of variance), working engagement (a e) was the cutting parameter that exerted the strongest effect on most of the 3D roughness parameters. Feed per tooth (f z ) was the most important cutting parameter in cavity formation. Cutting speed (v c) and depth of cut (a p) did not significantly affect the 3D roughness parameters. Cutting speed showed the strongest influence on residual stress, while depth of cut exerted the strongest effect on the formation of white layer and on the increase in surface hardness.
Resumo:
Nella tesi si analizzano le principali fonti del rumore aeronautico, lo stato dell'arte dal punto di vista normativo, tecnologico e procedurale. Si analizza lo stato dell'arte anche riguardo alla classificazione degli aeromobili, proponendo un nuovo indice prestazionale in alternativa a quello indicato dalla metodologia di certificazione (AC36-ICAO) Allo scopo di diminuire l'impatto acustico degli aeromobili in fase di atterraggio, si analizzano col programma INM i benefici di procedure CDA a 3° rispetto alle procedure tradizionali e, di seguito di procedure CDA ad angoli maggiori in termini di riduzione di lunghezza e di area delle isofoniche SEL85, SEL80 e SEL75.
Resumo:
Particle concentration is a principal factor that affects erosion rate of solid surfaces under particle impact, such as pipe bends in pneumatic conveyors; it is well known that a reduction in the specific erosion rate occurs under high particle concentrations, a phenomenon referred to as the “shielding effect”. The cause of shielding is believed to be increased likelihood of inter-particulate collisions, the high collision probability between incoming and rebounding particles reducing the frequency and the severity of particle impacts on the target surface. In this study, the effects of particle concentration on erosion of a mild steel bend surface have been investigated in detail using three different particulate materials on an industrial scale pneumatic conveying test rig. The materials were studied so that two had the same particle density but very different particle size, whereas two had very similar particle size but very different particle density. Experimental results confirm the shielding effect due to high particle concentration and show that the particle density has a far more significant influence than the particle size, on the magnitude of the shielding effect. A new method of correcting for change in erosivity of the particles in repeated handling, to take this factor out of the data, has been established, and appears to be successful. Moreover, a novel empirical model of the shielding effects has been used, in term of erosion resistance which appears to decrease linearly when the particle concentration decreases. With the model it is possible to find the specific erosion rate when the particle concentration tends to zero, and conversely predict how the specific erosion rate changes at finite values of particle concentration; this is critical to enable component life to be predicted from erosion tester results, as the variation of the shielding effect with concentration is different in these two scenarios. In addition a previously unreported phenomenon has been recorded, of a particulate material whose erosivity has steadily increased during repeated impacts.
Resumo:
Solid oral dosage form disintegration in the human stomach is a highly complex process dependent on physicochemical properties of the stomach contents as well as on physical variables such as hydrodynamics and mechanical stress. Understanding the role of hydrodynamics and forces in disintegration of oral solid dosage forms can help to improve in vitro disintegration testing and the predictive power of the in vitro test. The aim of this work was to obtain a deep understanding of the influence of changing hydrodynamic conditions on solid oral dosage form performance. Therefore, the hydrodynamic conditions and forces present in the compendial PhEur/USP disintegration test device were characterized using a computational fluid dynamics (CFD) approach. Furthermore, a modified device was developed and the hydrodynamic conditions present were simulated using CFD. This modified device was applied in two case studies comprising immediate release (IR) tablets and gastroretentive drug delivery systems (GRDDS). Due to the description of movement provided in the PhEur, the movement velocity of the basket-rack assembly follows a sinusoidal profile. Therefore, hydrodynamic conditions are changing continually throughout the movement cycle. CFD simulations revealed that the dosage form is exposed to a wide range of fluid velocities and shear forces during the test. The hydrodynamic conditions in the compendial device are highly variable and cannot be controlled. A new, modified disintegration test device based on computerized numerical control (CNC) technique was developed. The modified device can be moved in all three dimensions and radial movement is also possible. Simple and complex moving profiles can be developed and the influence of the hydrodynamic conditions on oral solid dosage form performance can be evaluated. Furthermore, a modified basket was designed that allows two-sided fluid flow. CFD simulations of the hydrodynamics and forces in the modified device revealed significant differences in the fluid flow field and forces when compared to the compendial device. Due to the CNC technique moving velocity and direction are arbitrary and hydrodynamics become controllable. The modified disintegration test device was utilized to examine the influence of moving velocity on disintegration times of IR tablets. Insights into the influence of moving speed, medium viscosity and basket design on disintegration times were obtained. An exponential relationship between moving velocity of the modified basket and disintegration times was established in simulated gastric fluid. The same relationship was found between the disintegration times and the CFD predicted average shear stress on the tablet surface. Furthermore, a GRDDS was developed based on the approach of an in situ polyelectrolyte complex (PEC). Different complexes composed of different grades of chitosan and carrageenan and different ratios of those were investigated for their swelling behavior, mechanical stability, and in vitro drug release. With an optimized formulation the influence of changing hydrodynamic conditions on the swelling behavior and the drug release profile was demonstrated using the modified disintegration test device. Both, swelling behavior and drug release, were largely dependent on the hydrodynamic conditions. Concluding, it has been shown within this thesis that the application of the modified disintegration test device allows for detailed insights into the influence of hydrodynamic conditions on solid oral dosage form disintegration and dissolution. By the application of appropriate test conditions, the predictive power of in vitro disintegration testing can be improved using the modified disintegration test device. Furthermore, CFD has proven a powerful tool to examine the hydrodynamics and forces in the compendial as well as in the modified disintegration test device. rn
Resumo:
Cloud services are becoming ever more important for everyone's life. Cloud storage? Web mails? Yes, we don't need to be working in big IT companies to be surrounded by cloud services. Another thing that's growing in importance, or at least that should be considered ever more important, is the concept of privacy. The more we rely on services of which we know close to nothing about, the more we should be worried about our privacy. In this work, I will analyze a prototype software based on a peer to peer architecture for the offering of cloud services, to see if it's possible to make it completely anonymous, meaning that not only the users using it will be anonymous, but also the Peers composing it will not know the real identity of each others. To make it possible, I will make use of anonymizing networks like Tor. I will start by studying the state of art of Cloud Computing, by looking at some real example, followed by analyzing the architecture of the prototype, trying to expose the differences between its distributed nature and the somehow centralized solutions offered by the famous vendors. After that, I will get as deep as possible into the working principle of the anonymizing networks, because they are not something that can just be 'applied' mindlessly. Some de-anonymizing techniques are very subtle so things must be studied carefully. I will then implement the required changes, and test the new anonymized prototype to see how its performances differ from those of the standard one. The prototype will be run on many machines, orchestrated by a tester script that will automatically start, stop and do all the required API calls. As to where to find all these machines, I will make use of Amazon EC2 cloud services and their on-demand instances.
Resumo:
Attività sperimentale riguardante lo studio dei materiali compositi, nell’ambito della progettazione a crashworthiness, svolto, tramite test dei provini realizzati nell’attività di tirocinio, presso i laboratori didattici della Scuola di ingegneria e architettura, sede di Forlì. Il lavoro di tesi, si è basato sulla valutazione dell’energia assorbita dai provini in materiale composito, tramite prove quasi-statiche; per questo tipo di prove sono stati utilizzati provini autostabilizzanti, rinforzati in fibra di carbonio e matrice in resina epossidica. Prima di procedere alla sperimentazione, sono stati studiati i risultati ottenuti da precedenti sperimentazioni eseguite da colleghi, per valutare quale fosse la configurazione migliore di provino, in termini di geometria, e trigger, che garantisse elevate energie di assorbimento. Dopo una panoramica dei materiali compositi, con riferimento alle caratteristiche e proprietà, alle diverse tipologie che si possono avere in ambito industriale, è spiegato il concetto di crashworthiness, le varie tipologie di test di impatto e le varie tipologie di rottura alla quale può essere soggetto un provino. Si è di seguito descritto come è stata valutata la scelta del tipo di geometria e del trigger, che sarebbero stati utilizzati per la progettazione del provino, e si è accennato al processo di laminazione svolta presso i laboratori della Scuola per la fabbricazione del provino. Al termine della descrizione dei tester usati per la sperimentazione sono, infine, illustrati i risultati delle prove svolte, con successivi commenti.
Resumo:
Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.
Resumo:
Physical fitness can be evaluated in competitive and school sports with different field tests under different conditions and goals. To produce valid results, a field test must be practical and reach high standards of test criteria (objectivity, reliability, validity). The purpose of this study was to investigate the test criteria and the practicability of a group of field tests called «SUISSE Sport Test Konzept Basis Feldtestbatterie». For 20-m sprint, ventral trunk muscle test, standing long jump, 2-kg medicine ball shot, obstacle course and cooper-test, test quality and practicability were evaluated. 221 children and adolescents from competitive sports and different school levels took part in the study. According to school level, they were divided into 3 groups (P: 7–11.5 y, S1: 11.6–15.5 y, S2: 15.6–21.8 y). Objectivity was tested for time or distance measurement in all tests as well as for error rating in obstacle test. For reliability measurement, 162 subjects performed the field tests twice within a few weeks. For validity results of standing long jump were compared with counter movement jump performance on a force plate. Correlation analysis was performed and level of significance was set for p < 0.05. For accuracy standard error was calculated. All tests achieved sufficient to excellent objectiv - ity with correlation-coefficient (r) lying between 0.85 and 0.99. Reliability was very good (r = 0.84–0.97). In cooper- and trunk test, reliability was higher for athletes than for pupils (trunk test: r = 0.95 vs. r = 0.62, cooper-test: r = 0.90 vs. r = 0.78). In those tests the reliability decreases with increasing age (cooper-test: P: r = 0.84, S1: r = 0.69, S2: r = 0.52; trunk-test: P: r = 0.69, S1: r = 0.71; S2: r = 0.39). Validity for standing long jump was good (r = 0.75–0.86). The standard error of the mean was between 4–8%, with the exception for cooper-test (athletes: 6%, pupils: 11%) and trunk test (athletes: 14%, pupils: 46%). The results show that the evaluated group of field tests is a practicable, objective and reliable tool to determine physical skills in young athletes as well as in a scholar setting over a broad age range. Most of the tests achieved the test criteria with the grades good to excellent. The lower coefficient of reliability for cooper- and trunk test by the pupils could be explained by motivational problems in this setting. For up to 20 subjects, a tester can accomplish the tests within 3 h. Finally, age-dependent grades were elaborated
Resumo:
The purpose of this thesis is to investigate the age-hardening of aluminum with magnesium and zinc in such proportions as to conform to the compound MgZn2. Because of a lack of time and proper equipment, the only property investigated was the hardness as indicated by the Rockwell Superficial Hardness Tester.
Resumo:
The subject of the thesis was based upon the theory of precipitation or age hardening of the copper by the compound formed by the Manganese and silicon present in the ternary Cu-Mn-Si alloy. The effect of the heat treatment to such an alloy was to be studied and the best aging time and temperature was to be determined.
Resumo:
The most important element in the alloying of steels, has also been used quite extensively as a third constituent in copper-zinc alloys. The chief characteristics of nickel which make it desirable as an alloying element are its toughness, high strength, and resistance to corrosion.
Resumo:
Many attempts have been made to improve iron and steel and their alloys by the addition of boron. The results obtained were not encouraging for the reason that the amount of boron used, generally from 0.2 to 2.0 per cent is altogether too high. This percentage of boron renders the product hard and brittle and of late the experiments with boron in this connection have been practically abandoned.