967 resultados para Multipurpose autonomous vehicle
Resumo:
This paper details the development of an online adaptive control system, designed to learn from the actions of an instructing pilot. Three learning architectures, single layer neural networks (SLNN), multi-layer neural networks (MLNN), and fuzzy associative memories (FAM) are considerd. Each method has been tested in simulation. While the SLNN and MLNN provided adequate control under some simulation conditions, the addition of pilot noise and pilot variation during simulation training caused these methods to fail.
Resumo:
The detailed system design of a small experimental autonomous helicopter is described. The system requires no ground-to-helicopter communications and hence all automation hardware is on-board the helicopter. All elements of the system are described including the control computer, the flight computer (the helicopter-to-control-computer interface), the sensors and the software. A number of critical implementation issues are also discussed.
Resumo:
Height is a critical variable for helicopter hover control. In this paper we discuss, and present experimental results for, two different height sensing techniques: ultrasonic and stereo imaging, which have complementary characteristics. Feature-based stereo is used which provides a basis for visual odometry and attitude estimation in the future.
Resumo:
This paper presents the results of an experimental program for evaluating sensors and sensing technologies in an underground mining applications. The objective of the experiments is to infer what combinations of sensors will provide reliable navigation systems for autonomous vehicles operating in a harsh underground environment. Results from a wide range of sensors are presented and analysed. Conclusions as to a best combination of sensors are drawn.
Resumo:
Height is a critical variable for helicopter hover control. In this paper we discuss, and present experimental results for, two different height sensing techniques: ultrasonic and stereo imaging, which have complementary characteristics. Feature-based stereo is used which provides a basis for visual odometry and attitude estimation in the future.
Resumo:
Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.
Resumo:
Unlicensed driving remains a serious problem for road safety, despite ongoing improvements in traffic law enforcement practices and technology. While it does not play a direct causative role in road crashes, unlicensed driving undermines the integrity of the driver licensing system and is associated with a range of high-risk behaviours. The Queensland Transport and Main Roads (TMR) commissioned a program of research with separate components relating to different aspects of unlicensed driving. Drawing on Australian and international studies, the Unlicensed and Unregistered Vehicle (UUV) project explores the nature of unlicensed driving in Queensland, consolidates the available research evidence and identifies gaps in current knowledge relating to the driving behaviours of unlicensed drivers.
Resumo:
This document has arisen from a request from BM Alliance Coal Operations Pty Ltd, to undertake and report on the key findings and statistics, key learning’s and recommendations for vehicle rollover and loss of traction (skid) incidents that have occurred at various BM Alliance coal operation mines in Queensland.
Resumo:
Licence sanctions including suspension, disqualification, or revocation have been effective in reducing recidivism and crash rates among those convicted of driving while under the influence of alcohol and/or drugs. Nonetheless, studies have indicated that many offenders continue to drive while they are unlicensed. Consequently, more recent attention has been given to vehicle sanctions that separate the offender from their vehicle. Vehicle based interventions focus on incapacitating the vehicle or separating it from the offending driver rather than relying on the threat of further sanctions to encourage compliance. Following on from a previous review conducted by Dr. Ron Christie (2006) for VicRoads, which examined the effectiveness of vehicle based sanctions in deterring unlicensed driving, this report considers the effectiveness of the aforementioned vehicle based sanctions for addressing drink driving.
Resumo:
In recent years, Oman has seen a shift in the burden of diseases towards road accidents. The main objective of this paper, therefore, is to describe key characteristics of heavy vehicle crashes in Oman and identify the key driving behaviours that influence fatality risks. Crash data from January 2009 to December 2011 were examined and it was found that of the 22,543 traffic accidents that occurred within this timeframe, 3,114 involved heavy vehicles. While the majority of these crashes were attributed to driver behaviours, a small proportion was attributed to other factors. The results of the study indicate that there is a need for a more thorough crash investigation process in Oman. Future research should explore the reporting processes used by the Royal Oman Police, cultural influences on heavy vehicle operations in Oman, and improvements to the current licensing system.
Resumo:
Map-matching algorithms that utilise road segment connectivity along with other data (i.e.position, speed and heading) in the process of map-matching are normally suitable for high frequency (1 Hz or higher) positioning data from GPS. While applying such map-matching algorithms to low frequency data (such as data from a fleet of private cars, buses or light duty vehicles or smartphones), the performance of these algorithms reduces to in the region of 70% in terms of correct link identification, especially in urban and sub-urban road networks. This level of performance may be insufficient for some real-time Intelligent Transport System (ITS) applications and services such as estimating link travel time and speed from low frequency GPS data. Therefore, this paper develops a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm that enhances the map-matching of low frequency positioning data on a road map. The well-known A* search algorithm is employed to derive the shortest path between two points while taking into account both link connectivity and turn restrictions at junctions. In the developed stMM algorithm, two additional weights related to the shortest path and vehicle trajectory are considered: one shortest path-based weight is related to the distance along the shortest path and the distance along the vehicle trajectory, while the other is associated with the heading difference of the vehicle trajectory. The developed stMM algorithm is tested using a series of real-world datasets of varying frequencies (i.e. 1 s, 5 s, 30 s, 60 s sampling intervals). A high-accuracy integrated navigation system (a high-grade inertial navigation system and a carrier-phase GPS receiver) is used to measure the accuracy of the developed algorithm. The results suggest that the algorithm identifies 98.9% of the links correctly for every 30 s GPS data. Omitting the information from the shortest path and vehicle trajectory, the accuracy of the algorithm reduces to about 73% in terms of correct link identification. The algorithm can process on average 50 positioning fixes per second making it suitable for real-time ITS applications and services.
Resumo:
It is impracticable to upgrade the 18,900 Australian passive crossings as such crossings are often located in remote areas, where power is lacking and with low road and rail traffic. The rail industry is interested in developing innovative in-vehicle technology interventions to warn motorists of approaching trains directly in their vehicles. The objective of this study was therefore to evaluate the benefits of the introduction of such technology. We evaluated the changes in driver performance once the technology is enabled and functioning correctly, as well as the effects of an unsafe failure of the technology? We conducted a driving simulator study where participants (N=15) were familiarised with an in-vehicle audio warning for an extended period. After being familiarised with the system, the technology started failing, and we tested the reaction of drivers with a train approaching. This study has shown that with the traditional passive crossings with RX2 signage, the majority of drivers complied (70%) and looked for trains on both sides of the rail track. With the introduction of the in-vehicle audio message, drivers did not approach crossings faster, did not reduce their safety margins and did not reduce their gaze towards the rail tracks. However participants’ compliance at the stop sign decreased by 16.5% with the technology installed in the vehicle. The effect of the failure of the in-vehicle audio warning technology showed that most participants did not experience difficulties in detecting the approaching train even though they did not receive any warning message. This showed that participants were still actively looking for trains with the system in their vehicle. However, two participants did not stop and one decided to beat the train when they did not receive the audio message, suggesting potential human factors issues to be considered with such technology.
Resumo:
In this work we present an autonomous mobile ma- nipulator that is used to collect sample containers in an unknown environment. The manipulator is part of a team of heterogeneous mobile robots that are to search and identify sample containers in an unknown environment. A map of the environment along with possible positions of sample containers are shared between the robots in the team by using a cloud-based communication interface. To grasp a container with its manipulator arm the robot has to place itself in a position suitable for the manipulation task. This optimal base placement pose is selected by querying a precomputed inverse reachability database.
Resumo:
This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
Resumo:
Completed as part of a Joint PhD program between Queensland University of Technology and the Royal Institute of Technology in Stockholm, Sweden, this thesis examines the effects of different government incentive policies on the demand, usage and pricing of energy efficient vehicles. This study outlines recommendations for policy makers aiming to increase the uptake of energy efficient vehicles. The study finds that whilst many government incentives have been successful in encouraging the uptake of energy efficient vehicles, policy makers need to both recognise and attempt to minimise the potential unintended consequences of such initiatives.