3 resultados para Multipurpose autonomous vehicle
em CaltechTHESIS
Resumo:
A series of experiments was conducted on the use of a device to passively generate vortex rings, henceforth a passive vortex generator (PVG). The device is intended as a means of propulsion for underwater vehicles, as the use of vortex rings has been shown to decrease the fuel consumption of a vehicle by up to 40% Ruiz (2010).
The PVG was constructed out of a collapsible tube encased in a rigid, airtight box. By adjusting the pressure within the airtight box while fluid was flowing through the tube, it was possible to create a pulsed jet with vortex rings via self-excited oscillations of the collapsible tube.
A study of PVG integration into an existing autonomous underwater vehicle (AUV) system was conducted. A small AUV was used to retrofit a PVG with limited alterations to the original vehicle. The PVG-integrated AUV was used for self-propelled testing to measure the hydrodynamic (Froude) efficiency of the system. The results show that the PVG-integrated AUV had a 22% increase in the Froude efficiency using a pulsed jet over a steady jet. The maximum increase in the Froude efficiency was realized when the formation time of the pulsed jet, a nondimensional time to characterize vortex ring formation, was coincident with vortex ring pinch-off. This is consistent with previous studies that indicate that the maximization of efficiency for a pulsed jet vehicle is realized when the formation of vortex rings maximizes the vortex ring energy and size.
The other study was a parameter study of the physical dimensions of a PVG. This study was conducted to determine the effect of the tube diameter and length on the oscillation characteristics such as the frequency. By changing the tube diameter and length by factors of 3, the frequency of self-excited oscillations was found to scale as f~D_0^{-1/2} L_0^0, where D_0 is the tube diameter and L_0 the tube length. The mechanism of operation is suggested to rely on traveling waves between the tube throat and the end of the tube. A model based on this mechanism yields oscillation frequencies that are within the range observed by the experiment.
Resumo:
Adaptive optics (AO) corrects distortions created by atmospheric turbulence and delivers diffraction-limited images on ground-based telescopes. The vastly improved spatial resolution and sensitivity has been utilized for studying everything from the magnetic fields of sunspots upto the internal dynamics of high-redshift galaxies. This thesis about AO science from small and large telescopes is divided into two parts: Robo-AO and magnetar kinematics.
In the first part, I discuss the construction and performance of the world’s first fully autonomous visible light AO system, Robo-AO, at the Palomar 60-inch telescope. Robo-AO operates extremely efficiently with an overhead < 50s, typically observing about 22 targets every hour. We have performed large AO programs observing a total of over 7,500 targets since May 2012. In the visible band, the images have a Strehl ratio of about 10% and achieve a contrast of upto 6 magnitudes at a separation of 1′′. The full-width at half maximum achieved is 110–130 milli-arcsecond. I describe how Robo-AO is used to constrain the evolutionary models of low-mass pre-main-sequence stars by measuring resolved spectral energy distributions of stellar multiples in the visible band, more than doubling the current sample. I conclude this part with a discussion of possible future improvements to the Robo-AO system.
In the second part, I describe a study of magnetar kinematics using high-resolution near-infrared (NIR) AO imaging from the 10-meter Keck II telescope. Measuring the proper motions of five magnetars with a precision of upto 0.7 milli-arcsecond/yr, we have more than tripled the previously known sample of magnetar proper motions and proved that magnetar kinematics are equivalent to those of radio pulsars. We conclusively showed that SGR 1900+14 and SGR 1806-20 were ejected from the stellar clusters with which they were traditionally associated. The inferred kinematic ages of these two magnetars are 6±1.8 kyr and 650±300 yr respectively. These ages are a factor of three to four times greater than their respective characteristic ages. The calculated braking index is close to unity as compared to three for the vacuum dipole model and 2.5-2.8 as measured for young pulsars. I conclude this section by describing a search for NIR counterparts of new magnetars and a future promise of polarimetric investigation of a magnetars’ NIR emission mechanism.
Resumo:
Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.
This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.
This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.
The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.
The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.