1000 resultados para Bolam Test
Resumo:
Based on the conventional through-short-match (TSM) method, an improved TSM method has been proposed in this Letter. This method gives an analytical solution and has almost all the advantages of conventional TSM methods. For example, it has no phase uncertainty and no bandwidth limitation. The experimental results show that the accuracy can be significantly improved with this method. The proposed theory can be applied to the through-open-match (TOM) method. (C) 2002 Wiley Periodicals. Inc.
Resumo:
The problem of phase uncertainty arising in calibration of the test fixtures is investigated in this paper, It is shown that the problem exists no matter what kinds of calibration standards are used. It is also found that there is no need to determine the individual S-parameters of the test fixtures. In order to eliminate the problem of phase uncertainty, three different precise (known) reflection standards or one known reflection standard plus one known transmission standard should be used to calibrate symmetrical test fixtures. For the asymmetrical cases, three known standards, including at least one transmission standard, should be used. The thru-open-match (TOM) and thru-short-match (TSM) techniques are the simplest methods, and they have no bandwidth limitation. When the standards are imprecise (unknown), it is recommended to use any suitable technique, such as the thru-reflect-line, line-reflect-line, thru-short-delay, thru-open-delay,line-reflect-match, line-reflect-reflect-match, or multiline methods, to accurately determine the values of the required calibration terms and, in addition, to use the TOM or TSM method with the same imprecise standards to resolve the phase uncertainty.
Resumo:
This paper begins from the thru-short-open (TSO) and thru-line-match (TLM) methods to investigate the correlation of the calibration equations of these two methods, The relations among the measurements with the corresponding standards are obtained. It is found that the line standard with zero length can be used instead of ideal open and short, in case that two test fixtures are symmetrical. For asymmetrical fixtures, the measurements with the standards line, open and short are related at certain frequencies, and the matched load can be replaced by the line standards. The relations established are used to test short and match standards and analyze the freqPuency limits of the TSO method, Good agreement between theory and experiment is obtained, It is found that the TSO method becomes very poor when the insertion phase of the thru standard is near n pi/4, and this method has a lower frequency limit. The TLM method is found unsuitable for calibrating asymmetrical fixtures.
Resumo:
Bulge test combined with a refined load-deflection model for long rectangular membrane was applied to determine the mechanical and fracture properties of PECVD silicon nitride (SiNx) thin films. Plane-strain modulus E-ps prestress s(0), and fracture strength s(max) of SiNx thin films deposited both on bare Si substrate and on SiO2-topped Si substrate were extracted. The SiNx thin films on different substrates possess similar values of E-ps and s(0) but quite different values of s(max). The statistical analysis of fracture strengths were performed by Weibull distribution function and the fracture origins were further predicted.
Resumo:
The mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates were characterized using bulge testing combined with a refined load-deflection model for long rectangular membranes. Plane-strain modulus E-ps, prestress so, and fracture strength s(max) for 3C-SiC thin films with thickness of 0.40 mu m and 1.42 mu m were extracted. The E, values of SiC are strongly dependent on grain orientation. The thicker SIC film presents lower so than the thinner film due to stress relaxation. The s(max) values decrease with increasing film thickness. The statistical analysis of the fracture strength data were achieved by Weibull distribution function and the fracture origins were predicted.
Resumo:
Under high concentration the temperature of photovoltaic solar cells is very high. It is well known that the efficiency and performance of photovoltaic solar cells decrease with the increase of temperature. So cooling is indispensable for a concentrator photovoltaic solar cell at high concentration. Usually passive cooling is widely considered in a concentrator system. However, the thermal conduction principle of concentrator solar cells under passive cooling is seldom reported. In this paper, GaInP/GaAs/Ge triple junction solar cells were fabricated using metal organic chemical vapor deposition technique. The thermal conductivity performance of monolithic concentrator GaInP/GaAs/Ge cascade solar cells under 400X concentration with a heat sink were studied by testing the surface and backside temperatures of solar cells. The tested result shows that temperature difference between both sides of the solar cells is about 1K. A theoretical model of the thermal conductivity and thermal resistance of the GaInP/GaAs/Ge triple junction solar cells was built, and the calculation temperature difference between both sides of the solar cells is about 0.724K which is consistent with the result of practical test. Combining the theoretical model and the practical testing with the upper surface temperature of tested 310K, the temperature distribution of the solar cells was researched.
Resumo:
This paper presents measurement methods for determining the reflection coefficients and frequency responses of semiconductor laser diodes, photodiodes, and EA modulator chips. A novel method for determining the intrinsic frequency responses of laser diodes is also proposed, and applications of the developed measurement methods are discussed. We demonstrate the compensation of bonding wire on the capacitances of both the submount and the laser diode, and present a method for estimating the potential modulation bandwidth of TO packaging technique. Initial study on removing the effects of test fixture on large-signal performances of optoelectronic devices at high data rate is also given.
Resumo:
Combinatorial testing is an important testing method. It requires the test cases to cover various combinations of parameters of the system under test. The test generation problem for combinatorial testing can be modeled as constructing a matrix which has certain properties. This paper first discusses two combinatorial testing criteria: covering array and orthogonal array, and then proposes a backtracking search algorithm to construct matrices satisfying them. Several search heuristics and symmetry breaking techniques are used to reduce the search time. This paper also introduces some techniques to generate large covering array instances from smaller ones. All the techniques have been implemented in a tool called EXACT (EXhaustive seArch of Combinatorial Test suites). A new optimal covering array is found by this tool.
Resumo:
With the advancement in network bandwidth and computing power, multimedia systems have become a popular means for information delivery. However, general principles of system testing cannot be directly applied to testing of multimedia systems on account of their stringent temporal and synchronization requirements. In particular, few studies have been made on the stress testing of multimedia systems with respect to their temporal requirements under resource saturation. Stress testing is important because erroneous behavior is most likely to occur under resource saturation. This paper presents an automatable method of test case generation for the stress testing of multimedia systems. It adapts constraint solving techniques to generate test cases that lead to potential resource saturation in a multimedia system. Coverage of the test cases is defined upon the reachability graph of a multimedia system. The proposed stress testing technique is supported by tools and has been successfully applied to a real-life commercial multimedia system. Although our technique focuses on the stress testing of multimedia systems, the underlying issues and concepts are applicable to other types of real-time systems.
Resumo:
A thermal model for concentrator solar cells based on energy conservation principles was designed. Under 400X concentration with no cooling aid, the cell temperature would get up to about 1200℃.Metal plates were used as heat sinks for cooling the system, which remarkably reduce the cell temperature. For a fixed concentration ratio, the cell temperature reduced as the heat sink area increased. In order to keep the cell at a constant temperature, the heat sink area needs to increase linearly as a function of the concentration ratio. GaInP/GaAs/Ge triple-junction solar cells were fabricated to verify the model. A cell temperature of 37℃ was measured when using a heat sink at 400X concentratration.
Resumo:
With the principles of microwave circuits and semiconductor device physics, two microwave power device test circuits combined with a test fixture are designed and simulated, whose properties are evaluated by a parameter network analyzer within the frequency range from 3 to 8GHz. The simulation and experimental results verify that the test circuit with a radial stub is better than that without. As an example, a C-band AlGaN/GaN HEMT microwave power device is tested with the designed circuit and fixture. With a 5.4GHz microwave input signal, the maximum gain is 8.75dB, and the maximum output power is 33.2dBm.
Resumo:
The open-short-load (OSL) method is very simple and widely used, for one-port test fixture calibration. In this paper, this method. is extended to the two-port calibration of test fixtures for the first time. The problem of phase uncertainty arising in this application has been solved. The comparison between our results and those obtained with the short-open-load-thru (SOLT) method shows that the method established is accurate enough for practical applications.