959 resultados para BN THIN-FILMS
Resumo:
Lithium tantalate thin films (LiTaO3) with (50:50) stoichiometry were prepared by spin coating method using a polymeric organic solution. The films were deposited on silicon (100) substrates with 4 layers. The substrates were previously cleaned and then the solution of lithium tantalate was deposited by adjusting the speed at 5000 rpm. The thin films deposited were thermally treated from 350 to 600degreesC for 3 hours in order to study the influence of the thermal treatment temperature on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction (XRD) results showed that the films are polycrystalline and secondary phases free. The thickness of films was observed by scanning electron microscopy (SEM). The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by thermal treatment.
Resumo:
SrBi2Ta2O9 thin films, produced by the polymeric precursor method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films thus obtained are crack-free, well-adhered, and fully crystallized, even when treated at 600 degreesC for 10 min. The microstructure displayed a polycrystalline nature with an elongate grain size comparable to the films obtained by the conventional treatment. The dielectric constant values are 240, 159 and 67, for the films treated at 600 degreesC, 650 degreesC and 700 degreesC, respectively, when the films are placed directly on the SiC susceptor. Electrical measurements revealed that the increase of the temperature treatment to 700 degreesC causes a complete loss of ferroelectricity due to degradation of the bottom interface. A 4 nun-ceramic wool put between the susceptor and the substrate minimizes the interface degradation leading to a dielectric constant, a dielectric loss, and a remnant polarization (2P(r)) of 181 muC/cm(2), 0.032 muC/cm(2), and 12.8 muC/cm(2), respectively, for a film treated at 750 degreesC for 20 min. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fatigue-free Bi3.25La0.75Ti3O12 (BLT) thin films were grown on LaNiO3,RuO2, and La0.5Sr0.5CoO3 bottom electrodes in a microwave furnace at 700 degreesC for 10 min. The remanent polarization (P-r) and the drive voltage (V-c) were in the range of 11-23 muC/cm(2) and 0.86-1.56 V, respectively, and are better than the values found in the literature. The BLT capacitors did not show any significant fatigue up to 10(10) read/write switching cycles. (C) 2004 American Institute of Physics.
Resumo:
Thin films of barium and strontium titanate (BST), synthesized by the polymeric precursor solution and spin coated on [Pt (140nm)/Ti (10 nM)/SiO2(1000 nm)/Si] substrates were found to be photoluminescent at room temperature when heat treated below 973 K, i.e. before their crystallization. First principles quantum mechanical techniques, based on density functional theory (DFT) were employed to study the electronic structure of two periodic models: one is standing for the crystalline BST thin film and the other one for the structurally disordered thin film. The aim is to compare the photoluminescence (PL) spectra of the crystalline and disordered thin films with their UV-vis spectra and with their computed electronic structures. The calculations show that new localized states are created inside the band gap of the crystalline model, as predicted by the UV-vis spectra. The study of the charge repartition in the structure before and after deformation of the periodic model shows that a charge gradient appears among the titanate clusters. This charge gradient, together with the new localized levels, gives favorable conditions for the trapping of holes and electrons in the structure, and thus to a radiative recombination process. Our models are not only consistent with the experimental data, they also allow to explain the relations between structural disorder and photoluminescence at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.
Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method
Resumo:
The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi2Nb2O9-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization P-r and a drive voltage V-c of 4.2 mu C/cm(2) and 1.7 V for the film annealed in the conventional furnace and 1.0 mu C/cm(2) and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 10(8) polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 degrees C show food electric properties. The ferroelectric nature of the BST35 thin film was indicated by buttertly- shaped C-V curves. The capacitance-frequency curves reveal that the dielectric constant may reach a value up to 800 at 100kHz. The dissipation factor was 0.01 at 100kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb ( 1-5 mu C/cm(2) and 265 Mb (2-11 mu C/cm(2)) DRAMs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effect of Sb doping in SnO2 thin films prepared by the sol-gel dip-coating (SGDC) process is investigated. Electronic and structural properties are evaluated through synchrotron radiation measurements by EXAFS and XANES. These data indicate that antimony is in the oxidation state W, and replaces tin atoms (Sn4+), at a grain surface site. Although the substitution yields net free carrier concentration, the electrical conductivity is increased only slightly, because it is reduced by the high grain boundary scattering. The overall picture leads to a shortening of the grain boundary potential, where oxygen vacancies compensate for oxygen adsorbed species, decreasing the trapped charge at grain boundary. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Lead zirconate titanate, Pb(Zr0.3Ti0.7)O-3 (PZT) thin films were prepared with success by the polymeric precursor method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), Micro-Raman spectroscopy and X-ray diffraction (XRD) were used to investigate the formation of the PZT perovskite phase. X-ray diffraction revealed that the film showed good crystallinity and no presence of secondary phases was identified. This indicates that the PZT thin films were crystallized in a single phase. PZT thin films showed a well-developed dense grain structure with uniform distribution, without the presence of rosette structure. The Raman spectra undoubtedly revealed these thin films in the tetragonal phase. For the thin films annealed at the 500-700 degreesC range, the vibration modes of the oxygen sublattice of the PZT perovskite phase were confirmed by FT-IR. The room temperature dielectric constant and dielectric loss of the PZT films, measured at 1 kHz were 646 and 0.090, respectively, for thin film with 365 nm thickness annealed at 700 degreesC for 2 h. A typical P-E hysteresis loop was observed and the measured values of P-s, P-r and E-c were 68 muC/cm(2), 44 muC/cm(2) and 123 kV/cm, respectively. The leakage current density was about 4.8 x 10(-7) A/cm(2) at 1.5 V. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
a-b axis-oriented, lanthanum doped Bi4Ti3O12 (BLT) thin films with a TiO2 rutile buffer layer deposited on Pt/Ti/SiO2/Si substrates were grown by the soft chemical method. Butterfly dielectric behavior has been achieved and can be ascribed to the ferroelectric domain switching. The remanent polarization and the coercive voltage for the film deposited on TiO2 buffer layer were 22.2 mu C/cm(2) and 1.8 V, respectively. Random-oriented BLT films showed a reduction in switching polarization when compared to the a-b axis-oriented films. Due to the excellent physical properties, these films are a promising candidate for use in lead-free applications in ferroelectric devices. (c) 2006 American Institute of Physics.
Resumo:
Antimony doped tin oxide thin films were deposited on glass by a chemical route derived from Pechini method. Particular emphasis was given to the microstructure of crystallized films. Crystalline phase formation was studied by grazing incident X-ray diffraction and by thermal analyses. Scanning electron microscopy was carried out for microstructure characterization, surface roughness was observed using scanning tunneling microscope and the optical transmittance measurements were performed in the wavelength range of 200-800 nm. (C) 2002 Kluwer Academic Publishers.
Resumo:
The effect of magnesium addition on the phase formation, microstructure and electric and ferroelectric properties of LiNbO3 thin films prepared through polymeric precursors was analyzed. By X ray diffraction no secondary phase was observed with the increase of magnesium concentration. Comparing to pure LiNbO3, the addition of 0.5 and 1.0 mol% of Mg+2 increased of the dielectric constant, while 2.0 mol% decreased it. It was noticed that the increase in additive concentration decreases the ferroelectric remanent polarization and increases the coercive field.
Resumo:
The BBT films were prepared by a spin-coating process from the polymeric precursor method (Pechini process). In order to study the influence of the temperature on the BBT microstructure and electrical properties, the films were deposited on platinum coated silicon substrates and annealed from 700degreesC to 800degreesC for 2 hours in oxygen atmosphere. The crystallinity of the films was examined by X-ray diffraction while the surface morphology was analysed by atomic force microscope. The dielectric properties and dissipation factor of BaBi2Ta2O9 films at 1 MHz were observed. The polarization-electric field hysteresis loops revealed the ferroelectric characteristics of BaBi2Ta2O9 thin films.
Resumo:
Aluminum doped zinc oxide polycrystalline thin films (AZO) were prepared by sol-gel dip-coating process. The sol was prepared from an ethanolic solution of zinc acetate using lithium hydroxide or succinic acid as hydrolytic catalyst. The quantity of aluminum in the sol was varied from 1 to 10 mol%. The structural characteristics studied by X-ray diffractometry were complemented by resistivity measurements and UV-Vis-NIR spectroscopy. The films are transparent from the near ultraviolet to the near infrared, presenting an absorption cut-off at almost 290 nm, irrespective of the nature of the catalyst and doping level. The best conductors were obtained for the AZO films containing 3 mol% of aluminum, prepared under acidic and basic catalysis and sintered at 450 degreesC. Their optical band-gap of 4.4 eV calculated from the absorption cut-off is larger than the values for band-gap widening predicted by the standard model for polar semiconductors. These polycrystalline films are textured with preferential orientation of grains along the wurtzite c-axis or the (100) direction. (C) 2003 Elsevier Ltd. All rights reserved.