961 resultados para nuclear C*-algebras
Resumo:
For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let A be a finite-dimensional Q-algebra and Gamma subset of A a Z-order. We classify those A with the property that Z(2) negated right arrow U(Gamma) and refer to this as the hyperbolic property. We apply this in case A = K S is a semigroup algebra, with K = Q or K = Q(root-d). A complete classification is given when KS is semi-simple and also when S is a non-semi-simple semigroup. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We construct five new elements of degree 6 in the nucleus of the free alternative algebra. We use the representation theory of the symmetric group to locate the elements. We use the computer algebra system ALBERT and an extension of ALBERT to express the elements in compact form and to show that these new elements are not a consequence of the known clegree-5 elements in the nucleus. We prove that these five new elements and four known elements form a basis for the subspace of nuclear elements of degree 6. Our calculations are done using modular arithmetic to save memory and time. The calculations can be done in characteristic zero or any prime greater than 6, and similar results are expected. We generated the nuclear elements using prime 103. We check our answer using five other primes.
Resumo:
In this article we prove that, if (U, ) is a finite dimensional baric algebra of (gamma, delta) type over a field F of characteristic not equal 2,3,5 such that gamma(2) - delta(2) + delta = 1 and 0,1, then rad(U) = R(U)boolean AND(bar(U))(2), where R(U) is the nilradical (maximal nil ideal) of U.
Resumo:
Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We describe bases of free commutative Moufang loop with seven generators and calculate the order of this loop. (c) 2011 Published by Elsevier Inc.
Resumo:
The relationship between an algebra and its associated monomial algebra is investigated when at least one of the algebras is d-Koszul It is shown that an algebra which has a reduced Grobnerbasis that is composed of homogeneous elements of degree d is d-Koszul if and only if its associated monomial algebra is d-Koszul The class of 2-d-determined algebras and the class 2-d-Koszul algebras are introduced In particular it is shown that 2-d-determined monomial algebras are 2-d-Koszul algebras and the structure of the ideal of relations of such an algebra is completely determined (C) 2010 Elsevier B V All rights reserved
Resumo:
The problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved
Resumo:
In 1996, Jespers and Wang classified finite semigroups whose integral semigroup ring has finitely many units. In a recent paper, Iwaki-Juriaans-Souza Filho continued this line of research by partially classifying the finite semigroups whose rational semigroup algebra contains a Z-order with hyperbolic unit group. In this paper, we complete this classification and give an easy proof that deals with all finite semigroups.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We determine derived representation type of complete finitely generated local and two-point algebras over an algebraically closed field. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Cytochrome c exhibits two positively charged sites: site A containing lysine residues with high pK(a) values and site L containing ionizable groups with pK(aobs),values around 7.0. This protein feature implies that cytochrome c can participate in the fusion of mitochondria and have its detachment from the inner membrane regulated by cell acidosis and alkalosis. In this study, We demonstrated that both horse and tuna cytochrome c exhibited two types of binding to inner mitochondrial membranes that contributed to respiration: a high-affinity and low-efficiency pi-I-independent binding (microscopic dissociation constant K(sapp2), similar to 10 nM) and a low-affinity and high-efficiency pH-dependent binding that for horse cytochrome c had a pK(a) of similar to 6.7. For tuna cytochrome c (Lys22 and His33 replaced with Asn and Trp, respectively), the effect of pH on K(sapp1), was less striking than for the horse heme protein, and both tuna and horse cytochrome c had closed K(sapp1) values at pH 7.2 and 6.2, respectively. Recombinant mutated cytochrome c H26N and H33N also restored the respiration of the cytochrome c-depleted mitoplast in a pH-dependent manner. Consistently, the detachment of cytochrome c from nondepleted mitoplasts was favored by alkalinization, suggesting that site Lionization influences the participation of cytochrome c in the respiratory chain and apoptosis.
Resumo:
Tropomyosin (Tm) is a dimeric coiled-coil protein that polymerizes through head-to-tail interactions. These polymers bind along actin filaments and play an important role in the regulation of muscle contraction. Analysis of its primary structure shows that Tm is rich in acidic residues, which are clustered along the molecule and may from sites for divalent cation binding. In a previous study, we showed that the Mg(2+)-induced increase in stability of the C-terminal half of Tin is sensitive to imitations near the C-terminus. In the present report, we study the interaction between Mg(2+) and full-length Tin and smaller fragments corresponding to the last 65 and 26 Tin residues. Although the smaller Tin peptide (Tm(259-284(W269))) is flexible and to large extent unstructured, the larger Tm(220-284(W269)) fragments forms a coiled coil in solution whose stability increases significantly in the presence of Mg(2+). NMR analysis shows thin Mg(2+) induces chemical shift perturbations in both Tm(220-284(W269)) and Tm(259-284(W269)) in the vicinity of His276, in which are located several negatively charged residues. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 583-590, 2009.