424 resultados para nanowire


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the growth of GaAs nanowires on the {111}B GaAs substrate, truncated triangular GaAs nanowires were commonly observed in the bottom region of nanowires. Through detailed structural analysis by electron microscopy, we have determined the growth mechanism of truncated triangular GaAs nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular dynamics simulations were carried out for Si/Ge axial nanowire heterostructures using modified effective atom method (MEAM) potentials. A Si–Ge MEAM interatomic cross potential was developed based on available experimental data and was used for these studies. The atomic distortions and strain distributions near the Si/Ge interfaces are predicted for nanowires with their axes oriented along the [111] direction. The cases of 10 and 25 nm diameter Si/Ge biwires and of 25 nm diameter Si/Ge/Si axial heterostructures with the Ge disk 1 nm thick were studied. Substantial distortions in the height of the atoms adjacent to the interface were found for the biwires but not for the Ge disks. Strains as high as 3.5% were found for the Ge disk and values of 2%–2.5% were found at the Si and Ge interfacial layers in the biwires. Deformation potential theory was used to estimate the influence of the strains on the band gap, and reductions in band gap to as small as 40% of bulk values are predicted for the Ge disks. The localized regions of increased strain and resulting energy minima were also found within the Si/Ge biwire interfaces with the larger effects on the Ge side of the interface. The regions of strain maxima near and within the interfaces are anticipated to be useful for tailoring band gaps and producing quantum confinement of carriers. These results suggest that nanowire heterostructures provide greater design flexibility in band structure modification than is possible with planar layer growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conductive AFM and in situ methods were used to determine contact resistance and resistivity of individual Sb2S3 nanowires. Nanowires were deposited on oxidized Si surface for in situ measurements and on Si surface with macroelectrodes for conductive AFM (C-AFM) measurements. Contact resistance was determined by measurement of I(V) characteristics at different distances from the nanowire contact with the macroelectrode and resistivity of nanowires was determined. Sb2S3 is a soft material with low adhesion force to the surface and therefore special precautions were taken during measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 us). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm2, the average detection time is 23.7 us with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2[thinsp]at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230[thinsp][deg]C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germanium was of great interest in the 1950’s when it was used for the first transistor device. However, due to the water soluble and unstable oxide it was surpassed by silicon. Today, as device dimensions are shrinking the silicon oxide is no longer suitable due to gate leakage and other low-κ dielectrics such as Al2O3 and HfO2 are being used. Germanium (Ge) is a promising material to replace or integrate with silicon (Si) to continue the trend of Moore’s law. Germanium has better intrinsic mobilities than silicon and is also silicon fab compatible so it would be an ideal material choice to integrate into silicon-based technologies. The progression towards nanoelectronics requires a lot of in depth studies. Dynamic TEM studies allow observations of reactions to allow a better understanding of mechanisms and how an external stimulus may affect a material/structure. This thesis details in situ TEM experiments to investigate some essential processes for germanium nanowire (NW) integration into nanoelectronic devices; i.e. doping and Ohmic contact formation. Chapter 1 reviews recent advances in dynamic TEM studies on semiconductor (namely silicon and germanium) nanostructures. The areas included are nanowire/crystal growth, germanide/silicide formation, irradiation, electrical biasing, batteries and strain. Chapter 2 details the study of ion irradiation and the damage incurred in germanium nanowires. An experimental set-up is described to allow for concurrent observation in the TEM of a nanowire following sequential ion implantation steps. Grown nanowires were deposited on a FIB labelled SiN membrane grid which facilitated HRTEM imaging and facile navigation to a specific nanowire. Cross sections of irradiated nanowires were also performed to evaluate the damage across the nanowire diameter. Experiments were conducted at 30 kV and 5 kV ion energies to study the effect of beam energy on nanowires of varied diameters. The results on nanowires were also compared to the damage profile in bulk germanium with both 30 kV and 5 kV ion beam energies. Chapter 3 extends the work from chapter 2 whereby nanowires are annealed post ion irradiation. In situ thermal annealing experiments were conducted to observe the recrystallization of the nanowires. A method to promote solid phase epitaxial growth is investigated by irradiating only small areas of a nanowire to maintain a seed from which the epitaxial growth can initiate. It was also found that strain in the nanowire greatly effects defect formation and random nucleation and growth. To obtain full recovery of the crystal structure of a nanowire, a stable support which reduces strain in the nanowire is essential as well as containing a seed from which solid phase epitaxial growth can initiate. Chapter 4 details the study of nickel germanide formation in germanium nanostructures. Rows of EBL (electron beam lithography) defined Ni-capped germanium nanopillars were extracted in FIB cross sections and annealed in situ to observe the germanide formation. Chapter 5 summarizes the key conclusions of each chapter and discusses an outlook on the future of germanium nanowire studies to facilitate their future incorporation into nanodevices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dependence of the resistivity with changing diameter of heavily-doped self-seeded germanium nanowires was studied for the diameter range 40 to 11 nm. The experimental data reveal an initial strong reduction of the resistivity with diameter decrease. At about 20 nm a region of slowly varying resistivity emerges with a peak feature around 14 nm. For diameters above 20 nm, nanowires were found to be describable by classical means. For smaller diameters a quantum-based approach was required where we employed the 1D Kubo–Greenwood framework and also revealed the dominant charge carriers to be heavy holes. For both regimes the theoretical results and experimental data agree qualitatively well assuming a spatial spreading of the free holes towards the nanowire centre upon diameter reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Le transistor monoélectronique (SET) est un dispositif nanoélectronique très attractif à cause de son ultra-basse consommation d’énergie et sa forte densité d’intégration, mais il n’a pas les capacités suffisantes pour pouvoir remplacer complètement la technologie CMOS. Cependant, la combinaison de la technologie SET avec celle du CMOS est une voie intéressante puisqu’elle permet de profiter des forces de chacune, afin d’obtenir des circuits avec des fonctionnalités additionnelles et uniques. Cette thèse porte sur l’intégration 3D monolithique de nanodispositifs dans le back-end-of-line (BEOL) d’une puce CMOS. Cette approche permet d’obtenir des circuits hybrides et de donner une valeur ajoutée aux puces CMOS actuelles sans altérer le procédé de fabrication du niveau des transistors MOS. L’étude se base sur le procédé nanodamascène classique développé à l’UdeS qui a permis la fabrication de dispositifs nanoélectroniques sur un substrat de SiO2. Ce document présente les travaux réalisés sur l’optimisation du procédé de fabrication nanodamascène, afin de le rendre compatible avec le BEOL de circuits CMOS. Des procédés de gravure plasma adaptés à la fabrication de nanostructures métalliques et diélectriques sont ainsi développés. Le nouveau procédé nanodamascène inverse a permis de fabriquer des jonctions MIM et des SET métalliques sur une couche de SiO2. Les caractérisations électriques de MIM et de SET formés avec des jonctions TiN/Al2O3 ont permis de démontrer la présence de pièges dans les jonctions et la fonctionnalité d’un SET à basse température (1,5 K). Le transfert de ce procédé sur CMOS et le procédé d’interconnexions verticales sont aussi développés par la suite. Finalement, un circuit 3D composé d’un nanofil de titane connecté verticalement à un transistor MOS est réalisé et caractérisé avec succès. Les résultats obtenus lors de cette thèse permettent de valider la possibilité de co-intégrer verticalement des dispositifs nanoélectroniques avec une technologie CMOS, en utilisant un procédé de fabrication compatible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planar <110> GaAs nanowires and quantum dots grown by atmospheric MOCVD have been introduced to non-standard growth conditions such as incorporating Zn and growing them on free-standing suspended films and on 10° off-cut substrates. Zn doped nanowires exhibited periodic notching along the axis of the wire that is dependent on Zn/Ga gas phase molar ratios. Planar nanowires grown on suspended thin films give insight into the mobility of the seed particle and change in growth direction. Nanowires that were grown on the off-cut sample exhibit anti-parallel growth direction changes. Quantum dots are grown on suspended thin films and show preferential growth at certain temperatures. Envisioned nanowire applications include twin-plane superlattices, axial pn-junctions, nanowire lasers, and the modulation of nanowire growth direction against an impeding barrier and varying substrate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semiconductor nanowire has been widely studied over the past decade and identified as a promising nanotechnology building block with application in photonics and electronics. The flexible bottom-up approach to nanowire growth allows for straightforward fabrication of complex 1D nanostructures with interesting optical, electrical, and mechanical properties. III-V nanowires in particular are useful because of their direct bandgap, high carrier mobility, and ability to form heterojunctions and have been used to make devices such as light-emitting diodes, lasers, and field-effect transistors. However, crystal defects are widely reported for III-V nanowires when grown in the common out-of-plane <111>B direction. Furthermore, commercialization of nanowires has been limited by the difficulty of assembling nanowires with predetermined position and alignment on a wafer-scale. In this thesis, planar III-V nanowires are introduced as a low-defect and integratable nanotechnology building block grown with metalorganic chemical vapor deposition. Planar GaAs nanowires grown with gold seed particles self-align along the <110> direction on the (001) GaAs substrate. Transmission electron microscopy reveals that planar GaAs nanowires are nearly free of crystal defects and grow laterally and epitaxially on the substrate surface. The nanowire morphology is shown to be primarily controlled through growth temperature and an ideal growth window of 470 +\- 10 °C is identified for planar GaAs nanowires. Extension of the planar growth mode to other materials is demonstrated through growth of planar InAs nanowires. Using a sacrificial layer, the transfer of planar GaAs nanowires onto silicon substrates with control over the alignment and position is presented. A metal-semiconductor field-effect transistor fabricated with a planar GaAs nanowire shows bulk-like low-field electron transport characteristics with high mobility. The aligned planar geometry and excellent material quality of planar III-V nanowires may lead to highly integrated III-V nanophotonics and nanoelectronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overarching theme of this thesis is mesoscale optical and optoelectronic design of photovoltaic and photoelectrochemical devices. In a photovoltaic device, light absorption and charge carrier transport are coupled together on the mesoscale, and in a photoelectrochemical device, light absorption, charge carrier transport, catalysis, and solution species transport are all coupled together on the mesoscale. The work discussed herein demonstrates that simulation-based mesoscale optical and optoelectronic modeling can lead to detailed understanding of the operation and performance of these complex mesostructured devices, serve as a powerful tool for device optimization, and efficiently guide device design and experimental fabrication efforts. In-depth studies of two mesoscale wire-based device designs illustrate these principles—(i) an optoelectronic study of a tandem Si|WO3 microwire photoelectrochemical device, and (ii) an optical study of III-V nanowire arrays.

The study of the monolithic, tandem, Si|WO3 microwire photoelectrochemical device begins with development and validation of an optoelectronic model with experiment. This study capitalizes on synergy between experiment and simulation to demonstrate the model’s predictive power for extractable device voltage and light-limited current density. The developed model is then used to understand the limiting factors of the device and optimize its optoelectronic performance. The results of this work reveal that high fidelity modeling can facilitate unequivocal identification of limiting phenomena, such as parasitic absorption via excitation of a surface plasmon-polariton mode, and quick design optimization, achieving over a 300% enhancement in optoelectronic performance over a nominal design for this device architecture, which would be time-consuming and challenging to do via experiment.

The work on III-V nanowire arrays also starts as a collaboration of experiment and simulation aimed at gaining understanding of unprecedented, experimentally observed absorption enhancements in sparse arrays of vertically-oriented GaAs nanowires. To explain this resonant absorption in periodic arrays of high index semiconductor nanowires, a unified framework that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes is developed in the context of silicon, using both analytic theory and electromagnetic simulations. This detailed theoretical understanding is then applied to a simulation-based optimization of light absorption in sparse arrays of GaAs nanowires. Near-unity absorption in sparse, 5% fill fraction arrays is demonstrated via tapering of nanowires and multiple wire radii in a single array. Finally, experimental efforts are presented towards fabrication of the optimized array geometries. A hybrid self-catalyzed and selective area MOCVD growth method is used to establish morphology control of GaP nanowire arrays. Similarly, morphology and pattern control of nanowires is demonstrated with ICP-RIE of InP. Optical characterization of the InP nanowire arrays gives proof of principle that tapering and multiple wire radii can lead to near-unity absorption in sparse arrays of InP nanowires.