743 resultados para blended learning methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotic Grasping is an important research topic in robotics since for robots to attain more general-purpose utility, grasping is a necessary skill, but very challenging to master. In general the robots may use their perception abilities like an image from a camera to identify grasps for a given object usually unknown. A grasp describes how a robotic end-effector need to be positioned to securely grab an object and successfully lift it without lost it, at the moment state of the arts solutions are still far behind humans. In the last 5–10 years, deep learning methods take the scene to overcome classical problem like the arduous and time-consuming approach to form a task-specific algorithm analytically. In this thesis are present the progress and the approaches in the robotic grasping field and the potential of the deep learning methods in robotic grasping. Based on that, an implementation of a Convolutional Neural Network (CNN) as a starting point for generation of a grasp pose from camera view has been implemented inside a ROS environment. The developed technologies have been integrated into a pick-and-place application for a Panda robot from Franka Emika. The application includes various features related to object detection and selection. Additionally, the features have been kept as generic as possible to allow for easy replacement or removal if needed, without losing time for improvement or new testing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conferences that deliver interactive sessions designed to enhance physician participation, such as role play, small discussion groups, workshops, hands-on training, problem- or case-based learning and individualised training sessions, are effective for physician education.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identificación y caracterización del problema: El problema que guía este proyecto, pretende dar respuesta a interrogantes tales como: ¿De qué modo el tipo de actividades que se diseñan, se constituyen en dispositivos posibilitadores de la comprensión de los temas propios de cada asignatura, por parte de los alumnos? A partir de esta pregunta, surge la siguiente: Al momento de resolver las actividades, ¿qué estrategias cognitivas ponen en juego los estudiantes? y ¿cuáles de ellas favorecen procesos de construcción del conocimiento? Hipótesis: - Las asignaturas cuyas actividades están elaboradas bajo la metodología de Aprendizaje Basado en Problemas y Estudio de Casos, propician aprendizajes significativos por parte de los estudiantes. - Las actividades elaboradas bajo la metodología del Aprendizaje Basado en Problemas y el Estudio de Casos requieren de procesos cognitivos más complejos que los que se implementan en las de tipo tradicional. Objetivo: - Identificar el impacto que tienen las actividades de aprendizaje de tipo tradicional y las elaboradas bajo la metodología de Aprendizaje Basado en Problemas y Estudio de Casos, en el aprendizaje de los alumnos. Materiales y Métodos: a) Análisis de las actividades de aprendizaje del primero y segundo año de la carrera de Abogacía, bajo lamodalidad a Distancia. b) Entrevistas tanto a docentes contenidistas como así también a los tutores. c) Encuestas y entrevistas a los alumnos. Resultados esperados: Se pretende confirmar que las actividades de aprendizaje, diseñadas bajo la metodología del Aprendizaje Basado en Problemas y el Estudio de Casos, promueven aprendizajes significativos en los alumnos. Importancia del proyecto y pertinencia: La relevancia del presente proyecto se podría identificar a través de dos grandes variables vinculadas entre sí: la relacionada con el dispositivo didáctico (estrategias implementadas por los alumnos) y la referida a lo institucional (carácter innovador de la propuesta de enseñanza y posibilidad de extenderla a otras cátedras). El presente proyecto pretende implementar mejoras en el diseño de las actividades de aprendizaje, a fin de promover en los alumnos la generación de ideas y soluciones responsables y el desarrollo de su capacidad analítica y reflexiva.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Són molts els estudis que avui en dia incideixen en la necessitat d’oferir un suport metodològic i psicològic als aprenents que treballen de manera autònoma. L’objectiu d’aquest suport és ajudar-los a desenvolupar les destreses que necessiten per dirigir el seu aprenentatge així com una actitud positiva i una major conscienciació envers aquest aprenentatge. En definitiva, aquests dos tipus de preparació es consideren essencials per ajudar els aprenents a esdevenir més autònoms i més eficients en el seu propi aprenentatge. Malgrat això, si bé és freqüent trobar estudis que exemplifiquen aplicacions del suport metodològic dins els seus programes, principalment en la formació d’estratègies o ajudant els aprenents a desenvolupar un pla de treball, aquest no és el cas quan es tracta de la seva preparació psicològica. Amb rares excepcions, trobem estudis que documentin com s’incideix en les actituds i en les creences dels aprenents, també coneguts com a coneixement metacognitiu (CM), en programes que fomenten l’autonomia en l’aprenentatge. Els objectius d’aquest treball son dos: a) oferir una revisió d’estudis que han utilitzat diferents mitjans per incidir en el CM dels aprenents i b) descriure les febleses i avantatges dels procediments i instruments que utilitzen, tal com han estat valorats en estudis de recerca, ja que ens permetrà establir criteris objectius sobre com i quan utilitzar-los en programes que fomentin l’aprenentatge autodirigit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recurso para la evaluación de la enseñanza y el aprendizaje de la geometría en la enseñanza secundaria desde la perspectiva de los nuevos docentes y de los que tienen más experiencia. Está diseñado para ampliar y profundizar el conocimiento de la materia y ofrecer consejos prácticos e ideas para el aula en el contexto de la práctica y la investigación actual. Hace especial hincapié en: comprender las ideas fundamentales del currículo de geometría; el aprendizaje de la geometría de manera efectiva; la investigación y la práctica actual; las ideas erróneas y los errores; el razonamiento de la geometría; la solución de problemas; el papel de la tecnología en el aprendizaje de la geometría.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Guía de ortografía dirigida a adultos. Su objetivo es crearles confianza mediante el desarrollo de rutinas y estrategias para hacer frente a las palabras comúnmente mal escritas. No se trata de reglas de ortografía, sino de dividir las palabras y aprender a recordarlas de una manera diferente. Contiene una sección de código de color en un programa de cuatro semanas para mejorar las habilidades de escritura, ejemplos, actividades e ilustraciones para reforzar los conocimientos aprendidos. El autor es un especialista en dislexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monográfico con el título: 'La universidad de la convergencia. Acreditación y certificaciones. Estrategias docentes, tutoriales y evaluadoras de reforma'. Resumen basado en el de la publicación

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monográfico con el título: 'Buenas prácticas docentes en la enseñanza universitaria'. Resumen basado en el de la publicación

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bossel's (2001) systems-based approach for deriving comprehensive indicator sets provides one of the most holistic frameworks for developing sustainability indicators. It ensures that indicators cover all important aspects of system viability, performance, and sustainability, and recognizes that a system cannot be assessed in isolation from the systems upon which it depends and which in turn depend upon it. In this reply, we show how Bossel's approach is part of a wider convergence toward integrating participatory and reductionist approaches to measure progress toward sustainable development. However, we also show that further integration of these approaches may be able to improve the accuracy and reliability of indicators to better stimulate community learning and action. Only through active community involvement can indicators facilitate progress toward sustainable development goals. To engage communities effectively in the application of indicators, these communities must be actively involved in developing, and even in proposing, indicators. The accuracy, reliability, and sensitivity of the indicators derived from local communities can be ensured through an iterative process of empirical and community evaluation. Communities are unlikely to invest in measuring sustainability indicators unless monitoring provides immediate and clear benefits. However, in the context of goals, targets, and/or baselines, sustainability indicators can more effectively contribute to a process of development that matches local priorities and engages the interests of local people.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of adjusting the weights (learning) in multilayer feedforward neural networks (NN) is known to be of a high importance when utilizing NN techniques in various practical applications. The learning procedure is to be performed as fast as possible and in a simple computational fashion, the two requirements which are usually not satisfied practically by the methods developed so far. Moreover, the presence of random inaccuracies are usually not taken into account. In view of these three issues, an alternative stochastic approximation approach discussed in the paper, seems to be very promising.