973 resultados para Scanning-tunneling-microscopy
Resumo:
Initial stage GaN growth by molecular-beam epitaxy (MBE) on SiC(0001) substrate is followed by in situ scanning tunneling microscopy. Comparison is made between growth on nominally flat and vicinal substrate surfaces and the results reveal characteristic differences between the two. Ex situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) rocking curve measurements of the films show lower density of defects and better structural quality of the vicinal film. We suggest the improved structural quality of the vicinal film is related to the characteristic difference in its initial stage nucleation and coalescence proccsses than that of the flat film.
Resumo:
A theoretical model is presented to describe electrical transport through individual DNA molecules. By contacting the proposed model with the experimentally measured data, a variety of valuable quantities are identified. The partially decoherent nature on the guanine-cytosine (GC) pairs of DNA is also elaborated in contrast to the completely incoherent hopping mechanism discussed in the context of charge transfer experiments. (C) 2001 American Institute of Physics.
Resumo:
We observe "ghost" islands formed on terraces during homoepitaxial nucleation of GaN. We attribute the ghost islands to intermediate nucleation states, which can be driven into "normal" islands by scanning tunneling microscopy. The formation of ghost islands is related to excess Ga atoms on the surface. The excess Ga also affect island number density: by increasing Ga coverage, the island density first decreases, reaching a minimum at about 1 monolayer (ML) Ga and then increases rapidly for coverages above 1 ML. This nonmonotonic behavior points to a surfactant effect of the Ga atoms.
Resumo:
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature.
Resumo:
In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Morphology of self-assembled GeSi quantum dot grown on Si(113) by Si molecular beam epitaxy has been studied by transmission electron microscopy and atomic force microscopy. Photoluminescence from the as-grown sample and annealed sample was studied. The results were analyzed and explained.
Resumo:
本论文利用扫描隧道显微镜(STM)在Au(111)电极上结合电化学方法在分子水平上观察分子的吸附组装和结构调控等。主要内容如下: (1) 用现场电化学扫描隧道显微镜(ECSTM)在Au(111)电极上研究了巯基己醇(MHO)取代六苯并苯的详细过程。取代速度强烈依赖于MHO的浓度。浓度较低时,反应速度较慢,我们可以用现场ECSTM跟踪观察详细的取代过程。取代首先发生在靠近重构线肘部的位置,出现单分子或多个六苯并苯分子的取代而形成的pits。随着取代过程的进行,这些小的pits生长或合并成较大的pits;pits周围的六苯并苯分子逐渐被MHO取代,最终在限定的区域内形成有序的domain。观察局部区域的取代过程,我们发现沿着重构线的方向扩展速度最快。快速取代之后,MHO在Au(111)电极表面形成( )R30°晶格结构,而慢速取代之后,MHO在表面形成c(4×2)超结构。与MHO在干净的Au(111)电极上的吸附相比,在六苯并苯修饰的Au(111)电极上即使在很低的浓度下也没有观察到平躺的物理吸附相,而是直接形成化学吸附相。这可能是由于六苯并苯的存在,MHO的碳氢链不能直接与Au原子接触。通过数据分析,我们发现取代速率曲线呈倒S形状。 (2) 我们用循环伏安法(CV)和ECSTM研究了腺嘌呤(Adenine,A),胸腺嘧啶(Thymine,T)和鸟嘌呤(Guanine,G)单组分及混合组分(A+T)的电化学二维相变。施加在Au(111)电极上的电位不同,A会呈现不同的吸附状态,包括物理吸附相和化学吸附相。在物理吸附的电势范围,高分辨ECSTM图像显示,同一个电势下共存着多样性的A的吸附结构。当基底电势变得更正时,一种更倾斜的吸附状态也就是A的化学吸附相会形成。在较负电位下,A和T能通过分子之间氢键作用在Au(111)电极上形成一种新的网络结构,而G能形成多层吸附。 (3) 利用STM研究了不同方法移除硫醇自组装膜之后金电极表面的再生情况。分别使用了化学法和电化学还原脱附法。化学法比较简单,使用的试剂有王水,piranha和NaBH4。王水对金电极表面有强腐蚀作用;piranha和NaBH4对金表面的作用较小,但是NaBH4处理之后的金表面上会有较多的亮岛出现。在移除自组装膜之后的电极上直接组装六苯并苯,我们观察到用piranha和NaBH4处理之后的金电极表面上六苯并苯自组装膜缺陷较多,有序domain也比较小。电化学法脱附可以得到比较干净的金表面,直接组装的六苯并苯自组装膜有序性好,缺陷少。而且,电化学脱附法通过控制电位可以实现硫醇自组装膜和六苯并苯自组装膜的相互转换。
Resumo:
We present photoelectron spectroscopic and low energy electron diffraction measurements of water adsorption on flat Si samples of the orientations (001), (115), (113), (5,5,12) and (112) as well as on curved samples covering continuously the ranges (001)-(117) and (113)-(5,5,12)-(112). On all orientations, water adsorption is dissociative (OH and H) and non-destructive. On Si(001) the sticking coefficient S and the saturation coverage Theta(sat) are largest. On Si(001) and for small miscuts in the [110]-azimuth, S is constant nearly up to saturation which proves that the kinetics involves a weakly bound mobile precursor state. For (001)-vicinals with high miscut angles (9-13 degrees), the step structure breaks down, the precursor mobility is affected and the adsorption kinetics changed. On (115), (113), (5,5,12) and (112), the values of S and Theta(sat) are smaller which indicates that not all sites are able to dissociate and bind water. For (113) the shape of the adsorption curves Theta versus exposure shows the existence of two adsorption processes, one with mobile precursor kinetics and one with Langmuir-like kinetics. On (5,5,12), two processes with mobile precursor kinetics are observed which are ascribed to adsorption on different surface regions within the large surface unit cell. From the corresponding values of S and Theta(sat), data for structure models are deduced. (C) 1997 Elsevier Science B.V.
Resumo:
The structure of silicon surfaces in the orientation range (113)-(5,5,12)-(337)-(112) has been investigated using high resolution LEED and photoemission both on a spherical and on flat samples. We find that Si(5,5,12) [5.3 degrees from (113) and 0.7 degrees from (937)] is the only stable orientation between (113) and (111) and confirm the result of Baski et al. [Science 269, 1556 (1995)] that it has a 2 x 1 superstructure with a very large unit cell of 7.68 x 53.5 Angstrom(2). Adsorption measurements of water on Si(5,5,12) yield a mobile precursor kinetics with two kinds of regions saturating at 0.25 and 0.15 ML which are related to adsorption on different sites. Using these results, a modified structure model is proposed. Surfaces between (113) and (5,5,12) separate into facets of these two orientations; between (5,5,12) and (112), they separate into (5,5,12) and (111) facets. (337) facets in this range may be considered as defective (5,5,12) facets.
Resumo:
Initial stage GaN growth by molecular-beam epitaxy (MBE) on SiC(0001) substrate is followed by in situ scanning tunneling microscopy. Comparison is made between growth on nominally flat and vicinal substrate surfaces and the results reveal characteristic differences between the two. Ex situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) rocking curve measurements of the films show lower density of defects and better structural quality of the vicinal film. We suggest the improved structural quality of the vicinal film is related to the characteristic difference in its initial stage nucleation and coalescence proccsses than that of the flat film.
Resumo:
Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing.
Resumo:
A ruthenium(II) bis(sigma-arylacetylide)-complex-based molecular wire functionalized with thiolacetyl alligator clips at both ends (OPERu) was used to fabricate gold substrate-molecular wire-conductive tip junctions. To elucidate the ruthenium-complex-enhanced charge transport, we conducted a single-molecule level investigation using the technique-combination method, where electronic delay constant, single-molecular conductance, and barrier height were obtained by scanning tunneling microscopy (STM) apparent height measurements, STM break junction measurements, and conductive probe-atomic force microscopy (CP-AFM) measurements, respectively.
Resumo:
A method for preparing nanoelectrode ensembles based on semi-interpenetrating network (SIN) of multi-walled carbon nanotubes (MWNTs) on gold electrode through phase-separation method is initially proposed. Individual nanoelectrode owns irregular three-dimensional MWNTs networks, which is denoted as SIN-MWNTs. On the as-prepared SIN-MWNTs nanoelectrode ensembles, the assembled MWNTs clusters in nanoscale serve as individual nanoelectrode and the electroinactive lipid networks located on the top of alkanethiol monolayer are used as a shielding layer. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), tapping-mode atomic force microscopy (TM-AFM) and scanning electron microscopy (SEM) were used to characterize the as-prepared SIN-MWNT nanoelectrode ensembles. Experimental results indicate that the well-defined nanoelectrode ensembles were prepared through self-assembly technology. Meantime, sigmoid curves in a wide scanning range can be obtained in CV experiments. This study may pave the way for the construction of truly nanoscopic nanoelectrode arrays by bottom-up strategy.
Resumo:
The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.