664 resultados para Riemann invariants
Resumo:
Le ricerche di carattere eustatico, mareografico, climatico, archeologico e geocronologico, sviluppatesi soprattutto nell’ultimo ventennio, hanno messo in evidenza che gran parte delle piane costiere italiane risulta soggetta al rischio di allagamento per ingressione marina dovuta alla risalita relativa del livello medio del mare. Tale rischio è la conseguenza dell’interazione tra la presenza di elementi antropici e fenomeni di diversa natura, spesso difficilmente discriminabili e quantificabili, caratterizzati da magnitudo e velocità molto diverse tra loro. Tra le cause preponderanti che determinano l’ingressione marina possono essere individuati alcuni fenomeni naturali, climatici e geologici, i quali risultano fortemente influenzati dalle attività umane soprattutto a partire dal XX secolo. Tra questi si individuano: - la risalita del livello del mare, principalmente come conseguenza del superamento dell’ultimo acme glaciale e dello scioglimento delle grandi calotte continentali; - la subsidenza. Vaste porzioni delle piane costiere italiane risultano soggette a fenomeni di subsidenza. In certe zone questa assume proporzioni notevoli: per la fascia costiera emiliano-romagnola si registrano ratei compresi tra 1 e 3 cm/anno. Tale subsidenza è spesso il risultato della sovrapposizione tra fenomeni naturali (neotettonica, costipamento di sedimenti, ecc.) e fenomeni indotti dall’uomo (emungimenti delle falde idriche, sfruttamento di giacimenti metaniferi, escavazione di materiali per l’edilizia, ecc.); - terreni ad elevato contenuto organico: la presenza di depositi fortemente costipabili può causare la depressione del piano di campagna come conseguenza di abbassamenti del livello della falda superficiale (per drenaggi, opere di bonifica, emungimenti), dello sviluppo dei processi di ossidazione e decomposizione nei terreni stessi, del costipamento di questi sotto il proprio peso, della carenza di nuovi apporti solidi conseguente alla diminuita frequenza delle esondazioni dei corsi d’acqua; - morfologia: tra i fattori di rischio rientra l’assetto morfologico della piana e, in particolare il tipo di costa (lidi, spiagge, cordoni dunari in smantellamento, ecc. ), la presenza di aree depresse o comunque vicine al livello del mare (fino a 1-2 m s.l.m.), le caratteristiche dei fondali antistanti (batimetria, profilo trasversale, granulometria dei sedimenti, barre sommerse, assenza di barriere biologiche, ecc.); - stato della linea di costa in termini di processi erosivi dovuti ad attività umane (urbanizzazione del litorale, prelievo inerti, costruzione di barriere, ecc.) o alle dinamiche idro-sedimentarie naturali cui risulta soggetta (correnti litoranee, apporti di materiale, ecc. ). Scopo del presente studio è quello di valutare la probabilità di ingressione del mare nel tratto costiero emiliano-romagnolo del Lido delle Nazioni, la velocità di propagazione del fronte d’onda, facendo riferimento allo schema idraulico del crollo di una diga su letto asciutto (problema di Riemann) basato sul metodo delle caratteristiche, e di modellare la propagazione dell’inondazione nell’entroterra, conseguente all’innalzamento del medio mare . Per simulare tale processo è stato utilizzato il complesso codice di calcolo bidimensionale Mike 21. La fase iniziale di tale lavoro ha comportato la raccolta ed elaborazione mediante sistema Arcgis dei dati LIDAR ed idrografici multibeam , grazie ai quali si è provveduto a ricostruire la topo-batimetria di dettaglio della zona esaminata. Nel primo capitolo è stato sviluppato il problema del cambiamento climatico globale in atto e della conseguente variazione del livello marino che, secondo quanto riportato dall’IPCC nel rapporto del 2007, dovrebbe aumentare al 2100 mediamente tra i 28 ed i 43 cm. Nel secondo e terzo capitolo è stata effettuata un’analisi bibliografica delle metodologie per la modellazione della propagazione delle onde a fronte ripido con particolare attenzione ai fenomeni di breaching delle difese rigide ed ambientali. Sono state studiate le fenomenologie che possono inficiare la stabilità dei rilevati arginali, realizzati sia in corrispondenza dei corsi d’acqua, sia in corrispondenza del mare, a discapito della protezione idraulica del territorio ovvero dell’incolumità fisica dell’uomo e dei territori in cui esso vive e produce. In un rilevato arginale, quale che sia la causa innescante la formazione di breccia, la generazione di un’onda di piena conseguente la rottura è sempre determinata da un’azione erosiva (seepage o overtopping) esercitata dall’acqua sui materiali sciolti costituenti il corpo del rilevato. Perciò gran parte dello studio in materia di brecce arginali è incentrato sulla ricostruzione di siffatti eventi di rottura. Nel quarto capitolo è stata calcolata la probabilità, in 5 anni, di avere un allagamento nella zona di interesse e la velocità di propagazione del fronte d’onda. Inoltre è stata effettuata un’analisi delle condizioni meteo marine attuali (clima ondoso, livelli del mare e correnti) al largo della costa emiliano-romagnola, le cui problematiche e linee di intervento per la difesa sono descritte nel quinto capitolo, con particolare riferimento alla costa ferrarese, oggetto negli ultimi anni di continui interventi antropici. Introdotto il sistema Gis e le sue caratteristiche, si è passati a descrivere le varie fasi che hanno permesso di avere in output il file delle coordinate x, y, z dei punti significativi della costa, indispensabili al fine della simulazione Mike 21, le cui proprietà sono sviluppate nel sesto capitolo.
Resumo:
Deutsche Version: Zunächst wird eine verallgemeinerte Renormierungsgruppengleichung für die effektiveMittelwertwirkung der EuklidischenQuanten-Einstein-Gravitation konstruiert und dann auf zwei unterschiedliche Trunkierungen, dieEinstein-Hilbert-Trunkierung und die$R^2$-Trunkierung, angewendet. Aus den resultierendenDifferentialgleichungen wird jeweils die Fixpunktstrukturbestimmt. Die Einstein-Hilbert-Trunkierung liefert nebeneinem Gaußschen auch einen nicht-Gaußschen Fixpunkt. Diesernicht-Gaußsche Fixpunkt und auch der Fluß in seinemEinzugsbereich werden mit hoher Genauigkeit durch die$R^2$-Trunkierung reproduziert. Weiterhin erweist sichdie Cutoffschema-Abhängigkeit der analysierten universellenGrößen als äußerst schwach. Diese Ergebnisse deuten daraufhin, daß dieser Fixpunkt wahrscheinlich auch in der exaktenTheorie existiert und die vierdimensionaleQuanten-Einstein-Gravitation somit nichtperturbativ renormierbar sein könnte. Anschließend wird gezeigt, daß der ultraviolette Bereich der$R^2$-Trunkierung und somit auch die Analyse des zugehörigenFixpunkts nicht von den Stabilitätsproblemen betroffen sind,die normalerweise durch den konformen Faktor der Metrikverursacht werden. Dadurch motiviert, wird daraufhin einskalares Spielzeugmodell, das den konformen Sektor einer``$-R+R^2$''-Theorie simuliert, hinsichtlich seinerStabilitätseigenschaften im infraroten (IR) Bereichstudiert. Dabei stellt sich heraus, daß sich die Theorieunter Ausbildung einer nichttrivialen Vakuumstruktur auf dynamische Weise stabilisiert. In der Gravitation könnteneventuell nichtlokale Invarianten des Typs $intd^dx,sqrt{g}R (D^2)^{-1} R$ dafür sorgen, daß der konformeSektor auf ähnliche Weise IR-stabil wird.
Resumo:
Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.
Resumo:
The main part of this thesis describes a method of calculating the massless two-loop two-point function which allows expanding the integral up to an arbitrary order in the dimensional regularization parameter epsilon by rewriting it as a double Mellin-Barnes integral. Closing the contour and collecting the residues then transforms this integral into a form that enables us to utilize S. Weinzierl's computer library nestedsums. We could show that multiple zeta values and rational numbers are sufficient for expanding the massless two-loop two-point function to all orders in epsilon. We then use the Hopf algebra of Feynman diagrams and its antipode, to investigate the appearance of Riemann's zeta function in counterterms of Feynman diagrams in massless Yukawa theory and massless QED. The class of Feynman diagrams we consider consists of graphs built from primitive one-loop diagrams and the non-planar vertex correction, where the vertex corrections only depend on one external momentum. We showed the absence of powers of pi in the counterterms of the non-planar vertex correction and diagrams built by shuffling it with the one-loop vertex correction. We also found the invariance of some coefficients of zeta functions under a change of momentum flow through these vertex corrections.
Resumo:
This research focuses on the definition of the complex relationship that exists between theory and project, which - in the architectural work by Oswald Mathias Ungers - is based on several essays and on the publications that - though they have never been collected in an organic text - make up an articulated corpus, so that it is possible to consider it as the foundations of a theory. More specifically, this thesis deals with the role of metaphor in Unger’s theory and its subsequent practical application to his projects. The path leading from theoretical analysis to architectural project is in Ungers’ view a slow and mediated path, where theory is an instrument without which it would not be possible to create the project's foundations. The metaphor is a figure of speech taken from disciplines such as philosophy, aesthetics, linguistics. Using a metaphor implies a transfer of meaning, as it is essentially based on the replacement of a real object with a figurative one. The research is articulated in three parts, each of them corresponding to a text by Ungers that is considered as crucial to understand the development of his architectural thinking. Each text marks three decades of Ungers’ work: the sixties, seventies and eighties. The first part of the research deals with the topic of Großform expressed by Ungers in his publication of 1966 Grossformen im Wohnungsbau, where he defines four criteria based on which architecture identifies with a Großform. One of the hypothesis underlying this study is that there is a relationship between the notion of Großform and the figure of metaphor. The second part of the thesis analyzes the time between the end of the sixties and the seventies, i.e. the time during which Ungers lived in the USA and taught at the Cornell University of Ithaca. The analysis focuses on the text Entwerfen und Denken in Vorstellungen, Metaphern und Analogien, written by Ungers in 1976, for the exhibition MAN transFORMS organized in the Cooper - Hewitt Museum in New York. This text, through which Ungers creates a sort of vocabulary to explain the notions of metaphor, analogy, signs, symbols and allegories, can be defined as the Manifesto of his architectural theory, the latter being strictly intertwined with the metaphor as a design instrument and which is best expressed when he introduces the 11 thesis with P. Koolhaas, P. Riemann, H. Kollhoff and A. Ovaska in Die Stadt in der Stadt in 1977. Berlin das grüne Stadtarchipel. The third part analyzes the indissoluble tie between the use of metaphor and the choice of the topic on which the project is based and, starting from Ungers’ publication in 1982 Architecture as theme, the relationship between idea/theme and image/metaphor is explained. Playing with shapes requires metaphoric thinking, i.e. taking references to create new ideas from the world of shapes and not just from architecture. The metaphor as a tool to interpret reality becomes for Ungers an inquiry method that precedes a project and makes it possible to define the theme on which the project will be based. In Ungers’ case, the architecture of ideas matches the idea of architecture; for Ungers the notions of idea and theme, image and metaphor cannot be separated from each other, the text on thematization of architecture is not a report of his projects, but it represents the need to put them in order and highlight the theme on which they are based.
Resumo:
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
Resumo:
Scopo della tesi è di estendere un celebre teorema di Montel, sulle famiglie normali di funzioni olomorfe, all'ambiente sub-ellittico delle famiglie di soluzioni u dell'equazione Lu=0, dove L appartiene ad un'ampia classe di operatori differenziali alle derivate parziali reali del secondo ordine in forma di divergenza, comprendente i sub-Laplaciani sui gruppi di Carnot, i Laplaciani sub-ellittici su arbitrari gruppi di Lie, oltre all'operatore di Laplace-Beltrami su varietà di Riemann. A questo scopo, forniremo una versione sub-ellittica di un altro notevole risultato, dovuto a Koebe, che caratterizza le funzioni armoniche come punti fissi di opportuni operatori integrali di media con nuclei non banali. Sarà fornito anche un adeguato sostituto della formula integrale di Cauchy.
Resumo:
Diese Arbeit besch"aftigt sich mit algebraischen Zyklen auf komplexen abelschen Variet"aten der Dimension 4. Ziel der Arbeit ist ein nicht-triviales Element in $Griff^{3,2}(A^4)$ zu konstruieren. Hier bezeichnet $A^4$ die emph{generische} abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$. Die ersten drei Kapitel sind eine Wiederholung von elementaren Definitionen und Begriffen und daher eine Festlegung der Notation. In diesen erinnern wir an elementare Eigenschaften der von Saito definierten Filtrierungen $F_S$ und $Z$ auf den Chowgruppen (vgl. cite{Sa0} und cite{Sa}). Wir wiederholen auch eine Beziehung zwischen der $F_S$-Filtrierung und der Zerlegung von Beauville der Chowgruppen (vgl. cite{Be2} und cite{DeMu}), welche aus cite{Mu} stammt. Die wichtigsten Begriffe in diesem Teil sind die emph{h"ohere Griffiths' Gruppen} und die emph{infinitesimalen Invarianten h"oherer Ordnung}. Dann besch"aftigen wir uns mit emph{verallgemeinerten Prym-Variet"aten} bez"uglich $(2:1)$ "Uberlagerungen von Kurven. Wir geben ihre Konstruktion und wichtige geometrische Eigenschaften und berechnen den Typ ihrer Polarisierung. Kapitel ref{p-moduli} enth"alt ein Resultat aus cite{BCV} "uber die Dominanz der Abbildung $p(3,2):mathcal R(3,2)longrightarrow mathcal A_4(1,2,2,2)$. Dieses Resultat ist von Relevanz f"ur uns, weil es besagt, dass die generische abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$ eine verallgemeinerte Prym-Variet"at bez"uglich eine $(2:1)$ "Uberlagerung einer Kurve vom Geschlecht $7$ "uber eine Kurve vom Geschlecht $3$ ist. Der zweite Teil der Dissertation ist die eigentliche Arbeit und ist auf folgende Weise strukturiert: Kapitel ref{Deg} enth"alt die Konstruktion der Degeneration von $A^4$. Das bedeutet, dass wir in diesem Kapitel eine Familie $Xlongrightarrow S$ von verallgemeinerten Prym-Variet"aten konstruieren, sodass die klassifizierende Abbildung $Slongrightarrow mathcal A_4(1,2,2,2)$ dominant ist. Desweiteren wird ein relativer Zykel $Y/S$ auf $X/S$ konstruiert zusammen mit einer Untervariet"at $Tsubset S$, sodass wir eine explizite Beschreibung der Einbettung $Yvert _Thookrightarrow Xvert _T$ angeben k"onnen. Das letzte und wichtigste Kapitel enth"ahlt Folgendes: Wir beweisen dass, die emph{ infinitesimale Invariante zweiter Ordnung} $delta _2(alpha)$ von $alpha$ nicht trivial ist. Hier bezeichnet $alpha$ die Komponente von $Y$ in $Ch^3_{(2)}(X/S)$ unter der Beauville-Zerlegung. Damit und mit Hilfe der Ergebnissen aus Kapitel ref{Cohm} k"onnen wir zeigen, dass [ 0neq [alpha ] in Griff ^{3,2}(X/S) . ] Wir k"onnen diese Aussage verfeinern und zeigen (vgl. Theorem ref{a4}) begin{theorem}label{maintheorem} F"ur $sin S$ generisch gilt [ 0neq [alpha _s ]in Griff ^{3,2}(A^4) , ] wobei $A^4$ die generische abelsche Variet"at der Dimension $4$ mit Polarisierung vom Typ $(1,2,2,2)$ ist. end{theorem}
Resumo:
In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.
Resumo:
The aim of this dissertation is to improve the knowledge of knots and links in lens spaces. If the lens space L(p,q) is defined as a 3-ball with suitable boundary identifications, then a link in L(p,q) can be represented by a disk diagram, i.e. a regular projection of the link on a disk. In this contest, we obtain a complete finite set of Reidemeister-type moves establishing equivalence, up to ambient isotopy. Moreover, the connections of this new diagram with both grid and band diagrams for links in lens spaces are shown. A Wirtinger-type presentation for the group of the link and a diagrammatic method giving the first homology group are described. A class of twisted Alexander polynomials for links in lens spaces is computed, showing its correlation with Reidemeister torsion. One of the most important geometric invariants of links in lens spaces is the lift in 3-sphere of a link L in L(p,q), that is the counterimage of L under the universal covering of L(p,q). Starting from the disk diagram of the link, we obtain a diagram of the lift in the 3-sphere. Using this construction it is possible to find different knots and links in L(p,q) having equivalent lifts, hence we cannot distinguish different links in lens spaces only from their lift. The two final chapters investigate whether several existing invariants for links in lens spaces are essential, i.e. whether they may assume different values on links with equivalent lift. Namely, we consider the fundamental quandle, the group of the link, the twisted Alexander polynomials, the Kauffman Bracket Skein Module and an HOMFLY-PT-type invariant.
Resumo:
Questo elaborato espone l'equivalenza tra la relatività generale di Einstein e una teoria poco conosciuta chiamata Gravità Teleparallela. Sebbene possono sembrare diverse, esse sono due modi equivalenti di vedere l'universo, la prima con spaziotempo curvo, curvatura e traiettorie geodetiche; la seconda con spazio piatto e la curvatura che si comporta come una forza. Per queste teorie si rivelano fondamentali elementi di geometria differenziale e tensoriale, come i tensori metrici, tensori di Riemann, derivate covarianti, oltre ai concetti fisici di tetrade, connessioni di Lorentz, sistemi inerziali e non.
Resumo:
Die vorliegende Arbeit untersucht das inverse Hindernisproblem der zweidimensionalen elektrischen Impedanztomographie (EIT) mit Rückstreudaten. Wir präsentieren und analysieren das mathematische Modell für Rückstreudaten, diskutieren das inverse Problem für einen einzelnen isolierenden oder perfekt leitenden Einschluss und stellen zwei Rekonstruktionsverfahren für das inverse Hindernisproblem mit Rückstreudaten vor. Ziel des inversen Hindernisproblems der EIT ist es, Inhomogenitäten (sogenannte Einschlüsse) der elektrischen Leitfähigkeit eines Körpers aus Strom-Spannungs-Messungen an der Körperoberfläche zu identifizieren. Für die Messung von Rückstreudaten ist dafür nur ein Paar aus an der Körperoberfläche nahe zueinander angebrachten Elektroden nötig, das zur Datenerfassung auf der Oberfläche entlang bewegt wird. Wir stellen ein mathematisches Modell für Rückstreudaten vor und zeigen, dass Rückstreudaten die Randwerte einer außerhalb der Einschlüsse holomorphen Funktion sind. Auf dieser Grundlage entwickeln wir das Konzept des konvexen Rückstreuträgers: Der konvexe Rückstreuträger ist eine Teilmenge der konvexen Hülle der Einschlüsse und kann daher zu deren Auffindung dienen. Wir stellen einen Algorithmus zur Berechnung des konvexen Rückstreuträgers vor und demonstrieren ihn an numerischen Beispielen. Ferner zeigen wir, dass ein einzelner isolierender Einschluss anhand seiner Rückstreudaten eindeutig identifizierbar ist. Der Beweis dazu beruht auf dem Riemann'schen Abbildungssatz für zweifach zusammenhängende Gebiete und dient als Grundlage für einen Rekonstruktionsalgorithmus, dessen Leistungsfähigkeit wir an verschiedenen Beispielen demonstrieren. Ein perfekt leitender Einschluss ist hingegen nicht immer aus seinen Rückstreudaten rekonstruierbar. Wir diskutieren, in welchen Fällen die eindeutige Identifizierung fehlschlägt und zeigen Beispiele für unterschiedliche perfekt leitende Einschlüsse mit gleichen Rückstreudaten.
Resumo:
In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.
Resumo:
In questa tesi si studiano alcune proprietà fondamentali delle funzioni Zeta e L associate ad una curva ellittica. In particolare, si dimostra la razionalità della funzione Zeta e l'ipotesi di Riemann per due famiglie specifiche di curve ellittiche. Si studia poi il problema dell'esistenza di un prolungamento analitico al piano complesso della funzione L di una curva ellittica con moltiplicazione complessa, attraverso l'analisi diretta di due casi particolari.