916 resultados para Fluxo óptico
Resumo:
The solution of partial differential equation of seepage problems is difficult to find analytically, especially for situations that involve great complexity. To overcome this problem, software based on finite differences and finite elements are usually used. This work presents the use of a finite element software, the GEO5, to solve the seepage problem at a dam of very complex section, the dam Eng. Armando Ribeiro Gonçalves, which at the end of its construction suffered rupture of the upstream slope at the central dam and then went through a process of reconstruction and auscultation. The analyses were performed for the operating condition of the reservoir, with an established flow. A numerical model was developed based on the level readings of the reservoir water and their piezometric readings as a proposal for the evaluation and future behavior prediction of the dam on established flow conditions. The use of constitutive models with the aid of computer systems is reflected in a way to predict future risk situations so they can be prevented
Resumo:
The soil heat flux and soil thermal diffusivity are important components of the surface energy balance, especially in ar id and semi-arid regions. The obj ective of this work was to carry out to estimate the soil heat flux from th e soil temperature measured at a single depth, based on the half-order time derivative met hod proposed by Wang and Bras (1999), and to establish a method capable of es timating the thermal diffusivity of the soil, based on the half order derivative, from the temporal series of soil temperature at two depths. The results obtained in the estimates of soil heat flux were compared with the values of soil heat flux measured through flux plates, and the thermal di ffusivity estimated was compared with the measurements carried out in situ. The results obtained showed excellent concordance between the estimated and measured soil heat flux, with correlation (r), coeffici ent of determination (R 2 ) and standard error (W/m 2 ) of: r = 0.99093, R 2 = 0.98194 and error = 2.56 (W/m 2 ) for estimated period of 10 days; r = 0,99069, R 2 = 0,98147 and error = 2.59 (W/m 2 ) for estimated period of 30 days; and r = 0,98974, R 2 = 0,97958 and error = 2.77 (W/m 2 ) for estimated period of 120 days. The values of thermal di ffusivity estimated by the proposed method showed to be coherent and consis tent with in situ measured va lues, and with the values found in the literature usi ng conventional methods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
Resumo:
The accessory optical system, the pretectal complex, and superior colliculus are important control centers in a variety of eye movement, being extremely necessary for image formation, consequently to visual perception. The accessory optical system is constituted by the nuclei: dorsal terminal nucleus, lateral terminal nucleus, medial terminal nucleus and interstitial nucleus of the posterior superior fasciculus. From a functional point of view they contribute to the image stabilization, participating in the visuomotor activity where all system cells respond to slow eye movements and visual stimuli, which is important for the proper functioning of other visual systems. The pretectal complex comprises a group of nuclei situated in mesodiencephalic transition, they are: anterior pretectal nucleus, posterior pretectal nucleus, medial pretectal nucleus, olivary pretectal nucleus and the nucleus of the optic tract, all retinal projection recipients and functionally are related to the route of the pupillary light reflex and the optokinetic nystagmus. The superior colliculus is an important subcortical visual station formed by layers and has an important functional role in the control of eye movements and head in response to multisensory stimuli. Our aim was to make a mapping of retinal projections that focus on accessory optical system, the nuclei of pretectal complex and the superior colliculus, searching mainly for pretectal complex, better delineation of these structures through the anterograde tracing with the B subunit of cholera toxin (CTb) followed by immunohistochemistry and characterized (measured diameter) synaptic buttons present on the fibers / terminals of the nucleus complex pré-tectal. In our results accessory optical system, including a region which appears to be medial terminal nucleus and superior colliculus, were strongly marked by fibers / terminals immunoreactive CTb as well as pretectal complex in the nucleus: optic tract, olivary pretectal nucleus, anterior pretectal nucleus and posterior pretectal nucleus. According to the characterization of the buttons it was possible to make a better definition of these nucleus.
Resumo:
The process mapping is an important tool in the management of organizations, allowing better levels of productivity, quality and reciprocity concerning the implementation and decision-making. It benefits in a clear way the process organization and assures the manager a macro vision of the system. In this sense, the objective of this study is to describe the mapping process as it occurs in the Januario Cicco Maternity School–MEJC. The bibliographic and descriptive research included interviews, observations and researches in many databases. The study analyzed the limiting points of the detected flow trying to find a better comprehension of the flow of patients in the maternity in order to offer the gestors the information necessary to improve the quality of the assistance as well as a general view of the flow of patients and any change detected there. As a result, we believe that the process mapping may become a relevant factor to the organizational management of MEJC, in view that it is an element that can contribute to ease up the management of information studied, considering that the perfect change of information inside a complex system will produce improvements in all spheres of this institution.
Resumo:
The expansion of cultivated areas with genetically modified crops (GM) is a worldwide phenomenon, stimulating regulatory authorities to implement strict procedures to monitor and verify the presence of GM varieties in agricultural crops. With the constant growing of plant cultivating areas all over the world, consumption of aflatoxin-contaminated food also increased. Aflatoxins correspond to a class of highly toxic contaminants found in agricultural products that can have harmful effects on human and animal health. Therefore, the safety and quality evaluation of agricultural products are important issues for consumers. Lateral flow tests (strip tests) is a promising method for the detection both proteins expressed in GM crops and aflatoxins-contaminated food samples. The advantages of this technique include its simplicity, rapidity and cost-effective when compared to the conventional methods. In this study, two novel and sensitive strip tests assay were developed for the identification of: (i) Cry1Ac and Cry8Ka5 proteins expressed in GM cotton crops and; (ii) aflatoxins from agricultural products. The first strip test was developed using a sandwhich format, while the second one was developed using a competitive format. Gold colloidal nanoparticles were used as detector reagent when coated with monoclonal antibodies. An anti-species specific antibody was sprayed at the nitrocellulose membrane to be used as a control line. To validate the first strip test, GM (Bollgard I® e Planta 50- EMBRAPA) and non-GM cotton leaf (Cooker 312) were used. The results showed that the strip containing antibodies for the identification of Cry1Ac and Cry8Ka5 proteins was capable of correctly distinguishing between GM samples (positive result) and non-GM samples (negative result), in a high sensitivity manner. To validate the second strip test, artificially contaminated soybean with Aspergillus flavus (aflatoxin-producing fungus) was employed. Food samples, such as milk and soybean, were also evaluated for the presence of aflatoxins. The strip test was capable to distinguish between samples with and without aflatoxins samples, at a sensitivity concentration of 0,5 μg/Kg. Therefore, these results suggest that the strip tests developed in this study can be a potential tool as a rapid and cost-effective method for detection of insect resistant GM crops expressing Cry1Ac and Cry8Ka5 and aflatoxins from food samples.
Resumo:
The expansion of cultivated areas with genetically modified crops (GM) is a worldwide phenomenon, stimulating regulatory authorities to implement strict procedures to monitor and verify the presence of GM varieties in agricultural crops. With the constant growing of plant cultivating areas all over the world, consumption of aflatoxin-contaminated food also increased. Aflatoxins correspond to a class of highly toxic contaminants found in agricultural products that can have harmful effects on human and animal health. Therefore, the safety and quality evaluation of agricultural products are important issues for consumers. Lateral flow tests (strip tests) is a promising method for the detection both proteins expressed in GM crops and aflatoxins-contaminated food samples. The advantages of this technique include its simplicity, rapidity and cost-effective when compared to the conventional methods. In this study, two novel and sensitive strip tests assay were developed for the identification of: (i) Cry1Ac and Cry8Ka5 proteins expressed in GM cotton crops and; (ii) aflatoxins from agricultural products. The first strip test was developed using a sandwhich format, while the second one was developed using a competitive format. Gold colloidal nanoparticles were used as detector reagent when coated with monoclonal antibodies. An anti-species specific antibody was sprayed at the nitrocellulose membrane to be used as a control line. To validate the first strip test, GM (Bollgard I® e Planta 50- EMBRAPA) and non-GM cotton leaf (Cooker 312) were used. The results showed that the strip containing antibodies for the identification of Cry1Ac and Cry8Ka5 proteins was capable of correctly distinguishing between GM samples (positive result) and non-GM samples (negative result), in a high sensitivity manner. To validate the second strip test, artificially contaminated soybean with Aspergillus flavus (aflatoxin-producing fungus) was employed. Food samples, such as milk and soybean, were also evaluated for the presence of aflatoxins. The strip test was capable to distinguish between samples with and without aflatoxins samples, at a sensitivity concentration of 0,5 μg/Kg. Therefore, these results suggest that the strip tests developed in this study can be a potential tool as a rapid and cost-effective method for detection of insect resistant GM crops expressing Cry1Ac and Cry8Ka5 and aflatoxins from food samples.
Resumo:
O advento da internet causou uma revolução na forma como a sociedade se relaciona. A consolidação das mídias sociais na ambiência digital acentuou o poder das mudanças e forçou a comunicação a rever paradigmas. O imediatismo e a velocidade com que a informação se propaga num processo simétrico de mão dupla – emissor e receptor – mudou a forma de trabalhar, pensar e planejar. O presente trabalho traz uma pesquisa com profissionais de comunicação e analisa como o fator prazo tem impactado no processo do planejamento de longo prazo – tradicionalmente anual – das ações voltadas para o ambiente digital. A pesquisa baseou-se em amplo referencial teórico das áreas de comunicação, marketing, redes e mídias sociais, tecnologia, administração, além de institutos de pesquisas e empresas. A fim de descrever as experiências vividas pelos profissionais, empreendemos ainda uma pesquisa qualitativa com entrevistas em profundidade, com amostra não probabilística, com foco nas disciplinas de marketing e propaganda e relações públicas. Os resultados apontam para um aprendizado ainda sendo conquistado, dia após dia, a partir de tentativas e erros, onde a preocupação dos profissionais fica dividida entre o prazo de antecedência com que é feito um planejamento e a obrigatoriedade de sua revisão contínua.
Propuesta para la implementación de un sistema CRM en PYMES del sector óptico de la ciudad de Bogotá
Resumo:
Tesis (Maestria en Administración de Empresas ).--Universidad de La Salle. Facultad de Ciencas Administrativas y Contables. Maestria en Administración de Empresas, 2013
Resumo:
This work aims to develop optical sensors for temperature monitoring in hydroelectric power plant heat exchangers. The proposed sensors are based on the Fiber Bragg Gratings technology. First of all, a prototype with three sensors inscribed in a same fiber was developed. This fiber was then fixed to a conventional Pt100 sensor rod and inserted in a thermowell. The ensemble was then calibrated in a workbench, presenting a maximum combined uncertainty of 2,06 °C. The sensor was installed in one of the heat exchangers of the Salto Osório’s hydroelectric power plant. This power plant is situated in the Iguaçu river, at the Paraná state. Despite the satisfactory results, the sensor was improved to a second version. In this, fifteen optical Bragg sensors were inscribed in a same fiber. The fixation with a conventional sensor was no longer necessary, because the first version results comproved the efficiency and response time in comparison to a conventional sensor. For this reason, it was decided to position the fiber inside a stainless steel rod, due to his low thermal expansion coefficient and high corrosion immunity. The utilization of fifteen fiber Bragg gratings aims to improve the sensor spatial resolution. Therefore, measurements every ten centimeters with respect to the heat exchanger’s height are possible. This provides the generation of a thermal map of the heat exchanger’s surface, which can be used for determination of possible points of obstruction in the hydraulic circuit of the heat exchanger. The heat exchanger’s obstruction in hydroelectric power plants usually occur by bio-fouling, and has direct influence in the generator’s cooling system efficiency. The obtained results have demonstrated the feasibility in application of the optical sensors technology in hydroelectric power plants.