923 resultados para Bovine, Bone histomorphometry, Mechanical stability, Endochondral ossification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3)63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paraffin has been used as surface protection of wood throughout the ages but its use for impregnation to improve wood resistance to biodegradation is recent. This study determined the main improvements on wood properties with paraffin impregnation. Healthy Pinus pinaster Ait. wood was impregnated with paraffin at different levels using a hot–cold process. Weight gain, equilibrium moisture content and dimensional stability (ASE) at 35 and 65 % relative humidity, termite durability against Reticulitermes grassei (Clément), bending strength, bending stiffness (MOE) and Janka hardness were determined. Density increased from 0.57 to 0.99, ASE ranged between 38–96 % and 16–71 % for 35 and 65 % relative humidity, respectively. Equilibrium moisture content decreased from 9.9 and 12.0 % to 0.8 and 3.6 % for 35 and 65 % relative humidity. Termite durability improved from level 4 to level 3 of attack, and higher termite mortality was found in treated wood (52 % against 17 %). Bending strength (MOR) increased with paraffin weight gain, reaching a 39 % increase. MOE also increased by about 13 % for wood with a weight gain around 80 %. Janka hardness increased significantly reaching about 40 % for wood with 80 % weight gain. Paraffin impregnated wood has improved properties with regard to equilibrium moisture content, dimensional stability and density, bending strength and Janka hardness, and resistance against termites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To perform a comparative evaluation of the mechanical resistance of simulated fractures of the mandibular body which were repaired using different fixation techniques with two different brands of 2.0 mm locking fixation systems. Four aluminum hemimandibles with linear sectioning simulating a mandibular body fracture were used as the substrates and were fixed using the two techniques and two different brands of fixation plate. These were divided into four groups: groups I and II were fixed with one four-hole plate, with four 6 mm screws in the tension zone and one four-hole plate, with four 10 mm screws in the compression zone; and groups III and IV were fixed with one four-hole plate with four 6 mm screws in the neutral zone. Fixation plates manufactured by Tóride were used for groups I and III, and by Traumec for groups II and IV. The hemimandibles were submitted to vertical, linear load testing in an Instron 4411 servohydraulic mechanical testing unit, and the load/displacement (3 mm, 5 mm and 7 mm) and the peak loads were measured. Means and standard deviations were evaluated applying variance analysis with a significance level of 5%. The only significant difference between the brands was seen at displacements of 7 mm. Comparing the techniques, groups I and II showed higher mechanical strength than groups III and IV, as expected. For the treatment of mandibular linear body fracture, two locking plates, one in the tension zone and another in the compression zone, have a greater mechanical strength than a single locking plate in the neutral zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to compare four methods of fixation in mandibular body fractures. Mechanical and photoelastic tests were performed using polyurethane and photoelastic resin mandibles, respectively. The study groups contained the following: (I), two miniplates of 2.0 mm; (II) one 2.0 mm plate and an Erich arch bar; (III) one 2.4 mm plate and an Erich arch bar, and (IV) one 2.0 mm plate and one 2.4 mm plate. The differences between the mean values were analyzed using Tukey's test, the Mann-Whitney test and the Bonferroni correction. Group II recorded the lowest resistance, followed by groups I, IV and III. The photoelastic test confirmed the increase of tension in group II. The 2.4 mm system board in linear mandibular body fractures provided more resistance and the use of only one 2.0 mm plate in the central area of the mandible created higher tension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To develop Y-shaped plates with different thicknesses to be used in simulated fractures of the mandibular condyle. Ten plates were developed in Y shape, containing eight holes, and 30 synthetic polyurethane mandible replicas were developed for the study. The load test was performed on an Instron Model 4411 universal testing machine, applying load in the mediolateral and anterior-posterior positions on the head of the condyle. Two-way ANOVA with Tukey testing with a 5% significance level was used. It was observed that when the load was applied in the medial-lateral plate of greater thickness (1.5 mm), it gave the highest strength, while in the anteroposterior direction, the plate with the highest resistance was of the lesser thickness (0.6 mm). A plate with a thickness of 1.5 mm was the one with the highest average value for all displacements. In the anteroposterior direction, the highest values of resistance were seen in the displacement of 15 mm. After comparing the values of the biomechanical testing found in the scientific literature, it is suggested that the use of Y plates are suitable for use in subcondylar fractures within the limitations of the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium phosphate salts, or more specifically hydroxyapatite, are products of great interest in the fields of medical and dental science due to their biocompatibility and osteoconduction property. Deproteinized xenografts are primarily constituted of natural apatites, sintered or not. Variations in the industrial process may affect physicochemical properties and, therefore, the biological outcome. The purpose of this work was to characterize the physical and chemical properties of deproteinized xenogenic biomaterials, Bio-Oss (Geistlich Biomaterials, Wolhuser, Switzerland) and Gen-Ox (Baumer S.A., Brazil), widely used as bone grafts. Scanning electron microscopy, infrared region spectroscopy, X-ray diffraction, thermogravimetry and degradation analysis were conducted. The results show that both materials presented porous granules, composed of crystalline hydroxyapatite without apparent presence of other phases. Bio-Oss presented greater dissolution in Tris-HCl than Gen-Ox in the degradation test, possibly due to the low crystallinity and the presence of organic residues. In conclusion, both commercial materials are hydroxyapatite compounds, Bio-Oss being less crystalline than Gen-Ox and, therefore, more prone to degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin after immersion in sodium hypochlorite (NaOCl), simulating 20 min of disinfection daily during 180 days. Forty disk-shaped (15 x 4 mm) and 40 rectangular (65 x 10 x 3 mm) specimens were prepared with a microwave-polymerized acrylic resin (Onda-Cryl). Specimens were immersed in either 0.5% NaOCl, 1% NaOCl, Clorox/Calgon and distilled water (control). Color measurements were determined by a portable colorimeter. Three parallel lines, separated by 1.0 mm, were registered on each specimen before and after immersion procedures to analyze the surface roughness. The flexural strength was measured using a 3-point bending test in a universal testing machine with a 50 kgf load cell and a crosshead speed of 1 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (?=0.05). There was no statistically significant differences (p>0.05) among the solutions for color, surface roughness and flexural strength. It may be concluded that immersion in NaOCl solutions simulating short-term daily use during 180 days did not influence the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose natural rubber latex (NRL) membranes as a protein delivery system. For this purpose Bovine Serum Albumin (BSA) was incorporated into the latex solution for in vitro protein delivery experiments. Different polymerization temperatures were used, from -10 to 27 °C, in order to control the membrane morphology. These membranes were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), as well as the Lowry Method to measure the BSA release. SEM and AFM microscopy analysis showed that the number, size and distribution of pores in NRL membranes can be varied, as well as its overall morphology. We have found that the morphology of the membrane is the predominant factor for higher protein release, compared with pore size and number of pores. Results demonstrated that the best drug-delivery system was the membrane polymerized at RT (27 °C), which does release 66% of its BSA content for up to 18 days. Our results indicate that NRLb could be used in the future as an active membrane that could accelerate bone healing in GBR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study investigated the effects of low-level laser therapy (LLLT) and electrical stimulation (ES) on bone loss in spinal cord-injured rats. Materials and Methods: Thirty-seven male Wistar rats were divided into four groups: standard control group (CG); spinal cord-injured control (SC); spinal cord-injured treated with laser (SCL; GaAlAs, 830 nm, CW, 30mW/cm, 250 J/cm(2)); and spinal cord-injured treated with electrical field stimulation (SCE; 1.5 MHz, 1: 4 duty cycles, 30 mW, 20 min). Biomechanical, densitometric, and morphometric analyses were performed. Results: SC rats showed a significant decrease in bone mass, biomechanical properties, and morphometric parameters (versus CG). SCE rats showed significantly higher values of inner diameter and internal and external areas of tibia diaphyses; and the SCL group showed a trend toward the same result (versus SC). No increase was found in either mechanical or densitometric parameters. Conclusion: We conclude that the mentioned treatments were able to initiate a positive bone-tissue response, maybe through stimulation of osteoblasts, which was able to determine the observed morphometric modifications. However, the evoked tissue response could not determine either biomechanical or densitometric modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adipose tissue-derived stem cells (ASCs) are among the more attractive adult stem cell options for potential therapeutic applications. Here, we studied and compared the basic biological characteristics of ASCs isolated from humans (hASCs) and mice (mASCs) and maintained in identical culture conditions, which must be examined prior to considering further potential clinical applications. hASCs and mASCs were compared for immunophenotype, differentiation potential, cell growth characteristics, senescence, nuclear morphology, and DNA content. Although both strains of ASCs displayed a similar immunophenotype, the percentage of CD73(+) cells was markedly lower and CD31(+) was higher in mASC than in hASC cultures. The mean population doubling time was 98.08 +/- 6.15 h for hASCs and 52.58 +/- 3.74 h for mASCs. The frequency of nuclear aberrations was noticeably lower in hASCs than in mASCs regardless of the passage number. Moreover, as the cells went through several in vitro passages, mASCs showed changes in DNA content and cell cycle kinetics (frequency of hypodiploid, G0/G1, G2/M, and hyperdiploid cells), whereas all of these parameters remained constant in hASCs. Collectively, these results suggest that mASCs display higher proliferative capacity and are more unstable than hASCs in long-term cultures. These results underscore the need to consider specificities among model systems that may influence outcomes when designing potential human applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of similar to 35-45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0-9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(l), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some refolding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yttria stabilized tetragonal zirconia (Y-TZP) ceramics were sintered by liquid phase sintering at low temperatures using bioglass as sintering additive. ZrO2-bioglass ceramics were prepared by mixing a ZrO2 stabilized with 3 Mol%Y2O3 and different amounts of bioglass based on 3CaO center dot P2O5-MgO-SiO2 system. Mixtures were compacted by uniaxial cold pressing and sintered in air, at 1200 and 1300 degrees C for 120 min. The influence of the bioglass content on the densification, tetragonal phase stability, bending strength, hardness and fracture toughness was investigated. The ceramics sintered at 1300 degrees C and prepared by addition of 3% of bioglass, exhibited the highest strength of 435 MPa, hardness of 1170 HV and fracture toughness of 6.3 MPa m(1/2). These results are related to the low monoclinic phase content, high relative density and the presence of the thermal residual stress generated between the ZrO2-matrix and bioglass grain boundary, contributing to the activation of the toughening mechanisms. (c) 2007 Elsevier B.V. All rights reserved.