453 resultados para Biosiliceous indet
Resumo:
This study of Antarctic sympagic meiofauna in pack ice during late winter compares communities between the perennially ice-covered western Weddell Sea and the seasonally ice-covered southern Indian Ocean. Sympagic meiofauna (proto- and metazoans > 20 µm) and eggs > 20 µm were studied in terms of diversity, abundance and carbon biomass, and with respect to vertical distribution. Metazoan meiofauna had significantly higher abundance and biomass in the western Weddell Sea (medians: 31.1 * 10**3/m**2 and 6.53 mg/m**2, respectively) than in the southern Indian Ocean (medians: 1.0 * 10**3 /m**2 and 0.06 mg/m**2, respectively). Metazoan diversity was also significantly higher in the western Weddell Sea. Furthermore, the two regions differed significantly in terms of meiofauna community composition, as revealed through multivariate analyses. The overall diversity of sympagic meiofauna was high, and integrated abundance and biomass of total meiofauna were also high in both regions (0.6 - 178.6 * 10**3/m**2 and 0.02 - 89.70 mg/m**2, respectively), mostly exceeding values reported earlier from the western Weddell Sea in winter. We attribute the differences in meiofauna communities between the two regions to the older first-year ice and multi-year ice that is present in the western Weddell Sea, but not in the southern Indian Ocean. Our study indicates the significance of perennially ice-covered regions for the establishment of diverse and abundant meiofauna communities. Furthermore, it highlights the potential importance of sympagic meiofauna for the organic matter pool and trophic interactions in sea ice.
Resumo:
The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.
Resumo:
An 1180-cm long core recovered from Lake Lyadhej-To (68°15'N, 65°45'E, 150 m a.s.l.) at the NW rim of the Polar Urals Mountains reflects the Holocene environmental history from ca. 11,000 cal. yr BP. Pollen assemblages from the diamicton (ca. 11,000-10,700 cal. yr BP) are dominated by Pre-Quaternary spores and redeposited Pinaceae pollen, pointing to a high terrestrial input. Turbid and nutrient-poor conditions existed in the lake ca. 10,700-10,550 cal. yr BP. The chironomid-inferred reconstructions suggest that mean July temperature increased rapidly from 10.0 to 11.8 °C during this period. Sparse, treeless vegetation dominated on the disturbed and denuded soils in the catchment area. A distinct dominance of planktonic diatoms ca. 10,500-8800 cal. yr BP points to the lowest lake-ice coverage, the longest growing season and the highest bioproductivity during the lake history. Birch forest with some shrub alder grew around the lake reflecting the warmest climate conditions during the Holocene. Mean July temperature was likely 11-13 °C and annual precipitation-400-500 mm. The period ca. 8800-5500 cal. yr BP is characterized by a gradual deterioration of environmental conditions in the lake and lake catchment. The pollen- and chironomid-inferred temperatures reflect a warm period (ca. 6500-6000 cal. BP) with a mean July temperature at least 1-2 °C higher than today. Birch forests disappeared from the lake vicinity after 6000 cal. yr BP. The vegetation in the Lyadhej-To region became similar to the modern one. Shrub (Betula nana, Salix) and herb tundra have dominated the lake catchment since ca. 5500 cal. yr BP. All proxies suggest rather harsh environmental conditions. Diatom assemblages reflect relatively short growing seasons and a longer persistence of lake-ice ca. 5500-2500 cal. yr BP. Pollen-based climate reconstructions suggest significant cooling between ca. 5500 and 3500 cal. yr BP with a mean July temperature 8-10 °C and annual precipitation-300-400 mm. The bioproductivity in the lake remained low after 2500 cal. yr BP, but biogeochemical proxies reflect a higher terrestrial influx. Changes in the diatom content may indicate warmer water temperatures and a reduced ice cover on the lake. However, chironomid-based reconstructions reflect a period with minimal temperatures during the lake history.
Resumo:
Physical and sedimentological investigations were carried out on a 14 m long gravity core and a 0.5 m long box core from 4440 m water depth off Queen Maud Land, East-Antarctica. Strongly bioturbated hemipelagic muds of predominantly terrigenous origin and a very small biogenic part build up the 'Normal-Facies'. Several sandy to silty layers are inserted in the 'Normal-Facies'. These layers are seperated by lithology, structure and the investigated parameters of this study and are interpreted as turbidites. The source area for the turbidity currents is supposed to be at the uppermost continental margin, close to the shelf break and there is evidenee for this gravity transport within the erosive Ritscher-Canyon, which extends close to the core position. The distribution of biogenic components indicates an age of 1.3 million years or more, with an average sedimentation rate of about 1 cm/1000 years. Early diagenetic proeesses caused water loss by compaction, errosion and dissolution of biogenic components and precipitation and recrystallization of manganese micronodules. Cyclic fluctuations of the sediment-parameters within the 'Normal-Facies' enable the distinction of a 'Glazial'- and an 'Interglazial'-Facies. The 'Glazial'-Facies reflects glacial sedimentary conditions and shows a dark olive gray colour, high susceptibility, low silt/clay-ratios, only a few biogenic components and the regular occurence of interrelated turbidite layers. In contrast, the 'Interglazial'-Facies is dominated by a light olive or olive-brown colour, low susceptibility, high silt/clay-ratios and an increased number of biogenic components. This facies corresponds to interglacial conditions. Three main processes are supposed to have been responsible for the observed facies changes: (1) the bottom water mass circulation, (2) the gravity transport by turbidity currents and (3) the biogenic surface production. These processes are related to the quaternary climatic changes. The extension of the ice shelves directed the gravity transport to the deep sea and the formation of Antarctic Bottom Water, which in turn influenced the silt/clay-ratios in the sediment record. Fluctuations in sea ice coverage controlled the biogenic surface production.
Resumo:
The origin and modes of transportation and deposition of inorganic sedimentary material of the Black Sea were studied in approximately 60 piston, gravity, and Kasten cores. The investigation showed that the sediment derived from the north and northwest (especially from the Danube) has a low calcite-dolomite ratio and a high quartz-feldspar ratio. Rock fragments are generally not abundant; garnet is the principal heavy mineral and illite is the predominant clay mineral. This sedimentary material differs markedly from that carried by Anatolian rivers, which is characterized by a high calcite-dolomite ratio and a low quartz-feldspar ratio. Rock fragments are abundant; pyroxene is the principal heavy mineral and montmorillonite is the predominant clay mineral. In generel, the clay fraction is large in all sediments (27.6-86.9 percent), and the lateral distributian indicates an increase in clay consent from the coasts toward two centers in the western and eastern Black Sea basin. Illite is the most common clay mineral in the Black Sea sediments. The lateral changes in composition of the clay mineral can easily be traced to the petrologic character of northern (rich in illite) and southern (rich in montmorillonite) source areas. In almost all cores, a rhythmic change of the montmorillonite-illite ratio with depth was observed. These changes may be related to the changing influence of the two provinces during the Holocene and late Pleistocene. Higher montmorillonite content seems to indicate climctic changes, probably stages of glaciation end permafrost in the northern area, at which time the illite supply was diminished to a large extent. The composition of the sand fraction is relatad to the different petrologic and morphologic characteristics of two major source provimces: (1) a northern province (rich in quartz, feldspars, and garnet) characterized by a low elevation, comprising the Danube basin area and the rivers draining the Russian platform; and (2) a southern province (rich in pyroxene and volcanic and metamorphic rocks) in the mountainous region of Anatolia and the Caucasus, characterized by small but extremely erosive rivers. The textural properties (graded bedding) of the deep-sea send layers clearly suggest deposition from turbidity currents. The carbonate content of the contemporary sediments ranges from 5 to 65 percent. It increases from the coast to a maximum in two centers in the western and eastern basin. This pattern reflects the distribution of the <2-µm fraction. The contemporary mud sedimentation is governed by two important factors: (1) the deposition of terrigenous allochthonous material of low carbonate content originating from the surrounding hinterland (northern and southern source areas), and (2) the autochthonous production of large quantities of biogenic calcite by coccolithophores during the last period of about 3,000-4,000 years.
Resumo:
The water masses in the Florida Straits and Bahamas region are important sources for the Northern Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located above the chemical lysocline in the Florida Straits and Bahamas region and discuss possible reasons for supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage, Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline. Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800-1000 m and below 1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the significant aragonite dissolution in 800-1000 m. The comparison of modern preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area which is highly saturated with respect to calcium carbonate.
Resumo:
Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.
Resumo:
A high-resolution study of benthic foraminiferal assemblages was performed on a ca. eight metre long sediment core from Gullmar Fjord on the west coast of Sweden. The results of 210Pb- and AMS 14C-datings show that the record includes the two warmest climatic episodes of the last 1500 years: the Medieval Warm Period (MWP) and the recent warming of the 20th century. Both periods are known to be anomalously warm and associated with positive NAO winter indices. Benthic foraminiferal successions of both periods are compared in order to find faunal similarities and common denominators corresponding to past climate changes. During the MWP, Adercotryma glomerata, Cassidulina laevigata and Nonionella iridea dominated the assemblages. Judging from dominance of species sensitive to hypoxia and the highest faunal diversity for the last ca. 2400 years, the foraminiferal record of the MWP suggests an absence of severe low oxygen events. At the same time, faunas and d13C values both point to high primary productivity and/or increased input of terrestrial organic carbon into the fjord system during the Medieval Warm Period. Comparison of the MWP and recent warming revealed different trends in the faunal record. The thin-shelled foraminifer N. iridea was characteristic of the MWP, but became absent during the second half of the 20th century. The recent Skagerrak-Kattegat fauna was rare or absent during the MWP but established in Gullmar Fjord at the end of the Little Ice Age or in the early 1900s. Also, there are striking differences in the faunal diversity and absolute abundances of foraminifera between both periods. Changes in primary productivity, higher precipitation resulting in intensified land runoff, different oxygen regimes or even changes in the fjord's trophic status are discussed as possible causes of these faunal differences.
Resumo:
In this study we investigate the potential of organic-walled dinoflagellate cysts (dinocysts) as tools for quantifying past sea-surface temperatures (SST) in the Southern Ocean. For this purpose, a dinocyst reference dataset has been formed, based on 138 surface sediment samples from different circum-Antarctic environments. The dinocyst assemblages of these samples are composed of phototrophic (gonyaulacoid) and heterotrophic (protoperidinioid) species that provide a broad spectrum of palaeoenvironmental information. The relationship between the environmental parameters in the upper water column and the dinocyst distribution patterns of individual species has been established using the statistical method of Canonical Correspondence Analysis (CCA). Among the variables tested, summer SST appeared to correspond to the maximum variance represented in the dataset. To establish quantitative summer SST reconstructions, a Modern Analogue Technique (MAT) has been performed on data from three Late Quaternary dinocyst records recovered from locations adjacent to prominent oceanic fronts in the Atlantic sector of the Southern Ocean. These dinocyst time series exhibit periodic changes in the dinocyst assemblage during the last two glacial/interglacial-cycles. During glacial conditions the relative abundance of protoperidinioid cysts was highest, whereas interglacial conditions are characterised by generally lower cyst concentrations and increased relative abundance of gonyaulacoid cysts. The MAT palaeotemperature estimates show trends in summer SST changes following the global oxygen isotope signal and a strong correlation with past temperatures of the last 140,000 years based on other proxies. However, by comparing the dinocyst results to quantitative estimates of summer SSTs based on diatoms, radiolarians and foraminifer-derived stable isotope records it can be shown that in several core intervals the dinocyst-based summer SSTs appeared to be extremely high. In these intervals the dinocyst record seems to be highly influenced by selective degradation, leading to unusual temperature ranges and to unrealistic palaeotemperatures. We used the selective degradation index (kt-index) to determine those intervals that have been biased by selective degradation in order to correct the palaeotemperature estimates. We show that after correction the dinocyst based SSTs correspond reasonably well with other palaeotemperature estimates for this region, supporting the great potential of dinoflagellate cysts as a basis for quantitative palaeoenvironmental studies.
Resumo:
The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.
Resumo:
The surface and sub-ice layer habitats and their metazoan fauna were studied on a drifting pack-ice floe in the western Weddell Sea from 29 November 2004 to 1 January 2005 during the "Ice Station POLarstern" (ISPOL). Flooding of the floe occurred at some places, and the establishment of surface layers with a brownish colour due to growing algae was observed at several sampling sites. The average surface-layer temperature, brine salinity and brine volume were -1.4 °C, 25.3 and 54%, respectively. The temperature-salinity relationship in the surface layer was seldom at equilibrium conditions. Chlorophyll a (Chl a) concentrations in the brine varied between 1.0 and 53.5 µg /L. Surface-layer thickness, salinity, Chl a concentration and copepod abundances were generally higher at the edge of the floe than in the inner part. The sympagic copepod species Drescheriella glacialis/racovitzai and Stephos longipes, with abundances ranging between 0 and 3830 ind/L (median: 2 ind/L) and 0 and 1293 ind/L (median: 4 ind/L), respectively, were the dominant members of the surface-layer meiofauna. Their populations consisted mainly of adults and early naupliar stages, which points to an active reproduction of these species within the surface layer. Other taxa found in the surface layer were undetermined turbellarians, the gastropod Tergipes antarcticus, and, for the first time, the ctenophore Callianira antarctica, and the amphipods Eusirus antarcticus and Eusirus tridentatus. During the course of our study, slight melting at the ice underside took place, releasing sympagic organisms to the water column. Chl a concentrations in the sub-ice water layer were very low (0.1-0.5 µg /L), except for 25 December when the Chl a concentration at 0 m depth increased to 2.3 µg /L. The most dominant sympagic copepod species found in the sub-ice layer was Ectinosoma sp., with abundances ranging between 1 and 599 ind/m**3 (median: 25 ind/m**3). Other sympagic copepod species occurring regularly in this habitat were D. glacialis/racovitzai, Diarthrodes cf. lilacinus, Idomene antarctica and S. longipes. All of these sympagic species were generally found in higher abundances at 0 m depth underneath the ice than at 5 m depth, in contrast to pelagic copepod species that occurred more frequently at 5 m depth. Niche separation and probable life-cycle strategies of dominant sympagic metazoans are discussed.
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53' N, 36°29.55' E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18-14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1-14.5 kyr BP), indicated by d18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative d13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5-12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative d13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7-8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5-5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.
Resumo:
Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5x2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.
Resumo:
New pollen and radiocarbon data from an 8.6-m coastal section, Cape Shpindler (69°43' N; 62°48' E), Yugorski Peninsula, document the latest Pleistocene and Holocene environmental history of this low Arctic region. Twelve AMS 14C dates indicate that the deposits accumulated since about 13,000 until 2000 radiocarbon years BP. A thermokarst lake formed ca. 13,000-12,800 years BP, when scarce arctic tundra vegetation dominated the area. By 12,500 years BP, a shallow lake existed at the site, and Arctic tundra with Poaceae, Cyperaceae, Salix, Saxifraga, and Artemisia dominated nearby vegetation. Climate was colder than today. Betula nana became dominant during the Early Preboreal period about 9500 years BP, responding to a warm event, which was one of the warmest during the Holocene. Decline in B. nana and Salix after 9500 years BP reflects a brief event of Preboreal cooling. A subsequent increase in Betula and Alnus fruticosa pollen percentages reflects amelioration of environmental conditions at the end of Preboreal period (ca. 9300 years BP). A decline in arboreal taxa later, with a dramatic increase in herb taxa, reflects a short cold event at about 9200 years BP. The pollen data reflect a northward movement of tree birch, peaking at the middle Boreal period, around 8500 years BP. Open Betula forest existed on the Kara Sea coast of the Yugorski Peninsula during the Atlantic period (8000-4500 years BP), indicating that climate was significantly warmer than today. Deteriorating climate around the Atlantic-Subboreal boundary (ca. 4500 years BP) is recorded by a decline in Betula percentages. Sedimentation slowed at the site, and processes of denudation and/or soil formation started at the beginning of the Subatlantic period, when vegetation cover on Yugorski Peninsula shifted to near-modern assemblages.
Resumo:
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km-300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.