970 resultados para Basic research


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80K under pulsed and continuous wave excitations. At temperature 80 K, the second-order correlation function at zero time delay, g((2))(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier-phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InGaN/GaN-multiple-quantum-well-based light emitting diode ( LED) nanopillar arrays with a diameter of approximately 200nm and a height of 700nm are fabricated by inductively coupled plasma etching using Ni self-assembled nanodots as etching mask. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence ( PL) intensity is achieved after the fabrication of nanopillars, and a blue shift and a decrease of full width at half maximum of the PL peak are observed. The method of additional wet etching with different chemical solutions is used to remove the etch-induced damage. The result shows that the dilute HCl ( HCl:H2O=1:1) treatment is the most effective. The PL intensity of nanopillar LEDs after such a treatment is about 3.5 times stronger than that before treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low temperature (LT) AlN interlayers were used to effectively reduce the tension stress and micro-cracks on the surface of the GaN epilayer grown on Si (111) substrate. Optical Microscopy (OM), Atomic Force Microscopy (AFM), Surface Electron Microscopy (SEM) and X-Ray Diffraction (XRD) were employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). In addition, wet etching method was used to evaluate the defect of the GaN epilayer. The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness, interlayer number and growth temperature of the LT AlN interlayer. With the optimized LT AlN interlayer structures, high quality GaN epilayers with a low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An interesting GaN photodetector structure, which can be used for characterizing the wavelength of incident ultraviolet light, is proposed. It is composed of two back-to-back integrated diodes, i.e. p-n and p-i-n GaN ultraviolet photodiodes with different spectral response. The wavelength of monochromatic ultraviolet light could be identified by measuring the photocurrent ratio value through a simple electronic circuit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The error theory of linear equation system has been applied to the calibration procedure of microwave network analyser in this article. A new explanation for the choice of the linear calibration equations is proposed and a general principle for choosing calibration equations is presented. The method can also be used to predict the occurrence of the problem of frequency limitation at some periodic frequencies. This principle is employed to the thru-short-delay (TSD) method and the solution using the chosen equations gives the most accurate results. A good agreement between the theory and the experiment has been obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes smart universal multiple-valued (MV) logic gates by transferring single electrons (SEs). The logic gates are based on MOSFET based SE turnstiles that can accurately transfer SEs with high speed at high temperature. The number of electrons transferred per cycle by the SE turnstile is a quantized function of its gate voltage, and this characteristic is fully exploited to compactly finish MV logic operations. First, we build arbitrary MV literal gates by using pairs of SE turnstiles. Then, we propose universal MV logic-to-value conversion gates and MV analog-digital conversion circuits. We propose a SPICE model to describe the behavior of the MOSFET based SE turnstile. We simulate the performances of the proposed gates. The MV logic gates have small number of transistors and low power dissipations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The valence band offset (VBO) of MgO (111)/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 3.65 +/- 0.23 eV and the conduction band offset is deduced to be 0.92 +/- 0.23 eV, indicating that the heterojunction has a type- I band alignment. The accurate determination of the valence and conduction band offsets is important for the applications of MgO/SiC optoelectronic devices. (C) 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtained a low density of coupled InAs/GaAs quantum dots (QDs) with an emission wavelength of around 1.3 mu m at room temperature. Atomic force microscopy and transmission electronic microscopy reveal that the dot size difference and the lateral displacement between the two dots are related to the spacer thickness. Spectroscopy of the coupled QD ensembles is considerably influenced by the spacer thickness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This letter reports on the Raman, optical and magnetic properties of FeNi co-doped ZnO nanowires prepared via a soft chemical solution method. The microstructural investigations show that the NiFe co-dopants are substituted into wurtzite ZnO nanostructure without forming any secondary phase. The co-doped nanowires show a remarkable reduction of 34 nm (267.9 meV) in the optical band gap, while suppression in the deep-level defect transition in visible luminescence. Furthermore, these nanowires exhibit ferromagnetism and an interesting low-temperature spin glass behavior, which may arise due to the presence of disorder and strong interactions of frustrated spin moments of Ni and Fe co-dopants on the ZnO lattice sites. Copyright (C) EPLA, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A discretely tunable Er-doped fiber-ring laser using a fiber Mach-Zehnder interferometer (MZI) and a tunable fiber Bragg grating (FBG) is proposed. In this scheme, the combination of MZI and FBG acts as a discrete wavelength selector. Analysis of its transmission function shows that discrete wavelength tuning can be realized, and experiments demonstrate 64 single-mode outputs with a mode spacing of 181.7 pm, and the output power is quite stable in the whole tuning range. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 2595-2598, 2009; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/mop.24690

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 2 x 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of I mm in length and cross-section of 400 nmx340 nm. The measurement results show that the switch has a V pi L pi figure of merit of 0.145 V-cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and -28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the measured capacitance-voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barrier layer was analysed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is shown that the calculated values of the relative permittivity are different from those formerly reported, and reverse biasing the Ni Schottky contact has an influence on the value of the relative permittivity. As the reverse bias increases from 0 V to - 3 V, the value of the relative permittivity decreases from 7.184 to 7.093.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Ge/Si heterojunction light emitting diode with a p(+)-Ge/i-Ge/N+-Si structure was fabricated using the ultrahigh vacuum chemical vapor deposition technology on N+-Si substrate. The device had a good I-V rectifying behavior. Under forward bias voltage ranging from 1.1 to 2.5 V, electroluminescence around 1565 nm was observed at room temperature. The mechanism of the light emission is discussed by the radiative lifetime and the scattering rate. The results indicate that germanium is a potential candidate for silicon-based light source material. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3216577]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes compact adders that are based on non-binary redundant number systems and single-electron (SE) devices. The adders use the number of single electrons to represent discrete multiple-valued logic state and manipulate single electrons to perform arithmetic operations. These adders have fast speed and are referred as fast adders. We develop a family of SE transfer circuits based on MOSFET-based SE turnstile. The fast adder circuit can be easily designed by directly mapping the graphical counter tree diagram (CTD) representation of the addition algorithm to SE devices and circuits. We propose two design approaches to implement fast adders using SE transfer circuits the threshold approach and the periodic approach. The periodic approach uses the voltage-controlled single-electron transfer characteristics to efficiently achieve periodic arithmetic functions. We use HSPICE simulator to verify fast adders operations. The speeds of the proposed adders are fast. The numbers of transistors of the adders are much smaller than conventional approaches. The power dissipations are much lower than CMOS and multiple-valued current-mode fast adders. (C) 2009 Elsevier Ltd. All rights reserved.