879 resultados para Automorphism Groups
Resumo:
In this paper, we study the variations of groups (galaxy properties according to the assembly history in Sloan Digital Sky Survey Data Release 6 (SDSS-DR6) selected groups. Using mock SDSS group catalogues, we find two suitable indicators of group formation time: (i) the isolation of the group, defined as the distance to the nearest neighbour ill terms of its virial radius and 00 the concentration. measured as the groups inner density calculated using the fifth nearest bright galaxy to the groups centre. Groups Within narrow ranges of Mass ill the mock catalO-Lie show increasing Ifl-OLIP alle With isolation and concentration. However, in the observational data the stellar age, as indicated by the spectral type, only shows a correlation with concentration. We study groups of similar mass and different assembly history. finding important differences ill their galaxy population. Particularly, ill high-mass SDSS groups. the number of members. mass-to-light ratios, red galaxy fractions and the magnitude difference between the brightest and second-brightest group galaxies, show different trends as a function of isolation and concentration, even when it is expected that the latter two quantities correlate with group age. Conversely. low-mass SDSS groups appear to be less sensitive to their assembly history. The correlations detected in the SDSS are not consistent with the trends measured in the mock catalogues. However, discrepancies can he explained in terms of the disagreement found in the a-e-isolation trends, suggesting that the model might be overestimating the effects of, environment, We discuss how the modelling of the cold gas ill satellite galaxies could be responsible for this problem. These results call be Used to improve our Understanding of the evolution of galaxies ill high-density environments.
Resumo:
We study segregation phenomena in 57 groups selected from the 2dF Percolation-Inferred Galaxy Groups (2PIGG) catalogue of galaxy groups. The sample corresponds to those systems located in areas of at least 80 per cent redshift coverage out to 10 times the radius of the groups. The dynamical state of the galaxy systems was determined after studying their velocity distributions. We have used the Anderson-Darling test to distinguish relaxed and non-relaxed systems. This analysis indicates that 84 per cent of groups have galaxy velocities consistent with the normal distribution, while 16 per cent of them have more complex underlying distributions. Properties of the member galaxies are investigated taking into account this classification. Our results indicate that galaxies in Gaussian groups are significantly more evolved than galaxies in non-relaxed systems out to distances of similar to 4R(200), presenting significantly redder (B - R) colours. We also find evidence that galaxies with M(R) <= -21.5 in Gaussian groups are closer to the condition of energy equipartition.
Resumo:
Let P be a principal S(3)-bundle over a sphere S(n), with n >= 4. Let G(p) be the gauge group of P. The homotopy type of G(p) when n - 4 was studied by A. Kono in [A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 295-297]. In this paper we extend his result anti we study the homotopy type of the gauge group of these bundles for all n <= 25. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Estimating the sizes of hard-to-count populations is a challenging and important problem that occurs frequently in social science, public health, and public policy. This problem is particularly pressing in HIV/AIDS research because estimates of the sizes of the most at-risk populations-illicit drug users, men who have sex with men, and sex workers-are needed for designing, evaluating, and funding programs to curb the spread of the disease. A promising new approach in this area is the network scale-up method, which uses information about the personal networks of respondents to make population size estimates. However, if the target population has low social visibility, as is likely to be the case in HIV/AIDS research, scale-up estimates will be too low. In this paper we develop a game-like activity that we call the game of contacts in order to estimate the social visibility of groups, and report results from a study of heavy drug users in Curitiba, Brazil (n = 294). The game produced estimates of social visibility that were consistent with qualitative expectations but of surprising magnitude. Further, a number of checks suggest that the data are high-quality. While motivated by the specific problem of population size estimation, our method could be used by researchers more broadly and adds to long-standing efforts to combine the richness of social network analysis with the power and scale of sample surveys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The control of molecular architectures may be essential to optimize materials properties for producing luminescent devices from polymers, especially in the blue region of the spectrum. In this Article, we report on the fabrication of Langmuir-Blodgett (LB) films of polyfluorene copolymers mixed with the phospholipid dimyristoyl phosphatidic acid (DMPA). The copolymers poly(9.9-dioetylfluorene)-co-phenylene (copolymer I) and poly(9,9-dioctylfluorene)-co-quaterphenylene) (copolymer 2) were synthesized via Suzuki reaction. Copolymer I could not form a monolayer on its own, but it yielded stable films when mixed with DMPA. In contrast, Langmuir monolayers could be formed from either the neat copolymer 2 or when mixed with DMPA. The surface pressure and surface potential measurements, in addition to Brewster angle microscopy, indicated that DMPA provided a suitable matrix for copolymer I to form a stable Langmuir film, amenable to transfer as LB films, while enhancing the ability of copolymer 2 to form LB films with enhanced emission, as indicated by fluorescence spectroscopy. Because a high emission was obtained with the mixed LB films and since the molecular-level interactions between the film components can be tuned by changing the experimental conditions to allow For further optimization, one may envisage applications of these films in optical devices such as organic light-emitting diodes (OLEDs).
Resumo:
The coastal plains of the States of Parana and Santa Catarina, in Southern Brazil, were first settled around 6000 B.P. by shellmound builders, a successful fisher-hunter-gatherer population that inhabited the coastal lowlands practically unchanged for almost five thousand years. Shellmounds were typically occupied as residential sites as well as cemeteries, and are usually associated with rich alimentary zones. Around 1200 B.P., the first evidence of ceramics brought from the interior is found in coastal areas, and together with ceramics there is a progressive abandonment of shellmound construction in favor of flat cold shallow sites. Here we consider if these changes were reflected in the postmarital residence practice of coastal groups, i.e., if the arrival or intensification of contact with groups from the interior resulted in changes in this aspect of social structure among the coastal groups. To test the postmarital residence practice we analyzed within-group variability ratios between males and females, following previous studies on the topic. and between-group, correlations between Mahalanobis distances and geographic distances. The results suggest that in the pre-ceramic series a matrilocal, postmarital residential system predominated, while in the ceramic period there was a shift toward patrilocality. This favors the hypothesis that the changes experienced by coastal groups after 1200 B.P. affected not only their economy and material culture, but important aspects of their sociopolitical organization as well.
Resumo:
We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hajnal and Juhasz proved that under CH there is a hereditarily separable, hereditarily normal topological group without non-trivial convergent sequences that is countably compact and not Lindelof. The example constructed is a topological subgroup H subset of 2(omega 1) that is an HFD with the following property (P) the projection of H onto every partial product 2(I) for I is an element of vertical bar omega(1)vertical bar(omega) is onto. Any such group has the necessary properties. We prove that if kappa is a cardinal of uncountable cofinality, then in the model obtained by forcing over a model of CH with the measure algebra on 2(kappa), there is an HFD topological group in 2(omega 1) which has property (P). Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.
Resumo:
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We classify groups G such that the unit group U-1 (ZG) is hypercentral. In the second part, we classify groups G whose modular group algebra has hyperbolic unit groups U-1 (KG).
Resumo:
The concept of taut submanifold of Euclidean space is due to Carter and West, and can be traced back to the work of Chern and Lashof on immersions with minimal total absolute curvature and the subsequent reformulation of that work by Kuiper in terms of critical point theory. In this paper, we classify the reducible representations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to Z(2)-coefficients.
Resumo:
We develop and describe continuous and discrete transforms of class functions on a compact semisimple, but not simple, Lie group G as their expansions into series of special functions that are invariant under the action of the even subgroup of the Weyl group of G. We distinguish two cases of even Weyl groups-one is the direct product of even Weyl groups of simple components of G and the second is the full even Weyl group of G. The problem is rather simple in two dimensions. It is much richer in dimensions greater than two-we describe in detail E-transforms of semisimple Lie groups of rank 3.
Resumo:
Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).