919 resultados para Adaptive systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The notion that learning can be enhanced when a teaching approach matches a learner’s learning style has been widely accepted in classroom settings since the latter represents a predictor of student’s attitude and preferences. As such, the traditional approach of ‘one-size-fits-all’ as may be applied to teaching delivery in Educational Hypermedia Systems (EHSs) has to be changed with an approach that responds to users’ needs by exploiting their individual differences. However, establishing and implementing reliable approaches for matching the teaching delivery and modalities to learning styles still represents an innovation challenge which has to be tackled. In this paper, seventy six studies are objectively analysed for several goals. In order to reveal the value of integrating learning styles in EHSs, different perspectives in this context are discussed. Identifying the most effective learning style models as incorporated within AEHSs. Investigating the effectiveness of different approaches for modelling students’ individual learning traits is another goal of this study. Thus, the paper highlights a number of theoretical and technical issues of LS-BAEHSs to serve as a comprehensive guidance for researchers who interest in this area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a novel on-line learning approach for radial basis function (RBF) neural network. Based on an RBF network with individually tunable nodes and a fixed small model size, the weight vector is adjusted using the multi-innovation recursive least square algorithm on-line. When the residual error of the RBF network becomes large despite of the weight adaptation, an insignificant node with little contribution to the overall system is replaced by a new node. Structural parameters of the new node are optimized by proposed fast algorithms in order to significantly improve the modeling performance. The proposed scheme describes a novel, flexible, and fast way for on-line system identification problems. Simulation results show that the proposed approach can significantly outperform existing ones for nonstationary systems in particular.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using additional store-checkpoinsts (SCPs) and compare-checkpoints (CCPs), we present an adaptive checkpointing for double modular redundancy (DMR) in this paper. The proposed approach can dynamically adjust the checkpoint intervals. We also design methods to calculate the optimal numbers of checkpoints, which can minimize the average execution time of tasks. Further, the adaptive checkpointing is combined with the DVS (dynamic voltage scaling) scheme to achieve energy reduction. Simulation results show that, compared with the previous methods, the proposed approach significantly increases the likelihood of timely task completion and reduces energy consumption in the presence of faults.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This note points out that the time complexity of the main multiple-surface sliding control (MSSC) algorithm in Huang and Chen [Huang, A. C. & Chen, Y. C. (2004). Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties. Automatica, 40(11), 1939-1945] is O(2^n). Here, we propose a simplified recursive design MSSC algorithm with time complexity O(n), and, using mathematical induction, we show that this algorithm agrees with this MSSC law.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper concerns the adaptive fast finite time control of a class of nonlinear uncertain systems of which the upper bounds of the system uncertainties are unknown. By using the fast non-smooth control Lyapunov function and the method of so-called adding a power integrator merging with adaptive technique, a recursive design procedure is provided, which guarantees the fast finite time stability of the closed-loop system. It is proved that the control input is bounded, and a simulation example is given to illustrate the effectiveness of the theoretical results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an enterprise grid computing environments, users have access to multiple resources that may be distributed geographically. Thus, resource allocation and scheduling is a fundamental issue in achieving high performance on enterprise grid computing. Most of current job scheduling systems for enterprise grid computing provide batch queuing support and focused solely on the allocation of processors to jobs. However, since I/O is also a critical resource for many jobs, the allocation of processor and I/O resources must be coordinated to allow the system to operate most effectively. To this end, we present a hierarchical scheduling policy paying special attention to I/O and service-demands of parallel jobs in homogeneous and heterogeneous systems with background workload. The performance of the proposed scheduling policy is studied under various system and workload parameters through simulation. We also compare performance of the proposed policy with a static space–time sharing policy. The results show that the proposed policy performs substantially better than the static space–time sharing policy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis demonstrated the architecture of adaptive intelligent systems for energy management that is capable of interacting with complex systems including the vehicle, environment, and driver components, as well as the interrelationships between these variables, to deliver fuel consumption improvements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper concerns the adaptive fast finite-time multiple-surface sliding control (AFFTMSSC) problem for a class of high-order uncertain non-linear systems of which the upper bounds of the system uncertainties are unknown. By using the fast control Lyapunov function and the method of so-called adding a power integrator merging with adaptive technique, a recursive design procedure is provided, which guarantees the fast finite-time stability of the closed-loop system. Further, it is proved that the control input is bounded.