847 resultados para outdoor spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiplicative spectrum of a complex Banach space X is the class K(X) of all (automatically compact and Hausdorff) topological spaces appearing as spectra of Banach algebras (X,*) for all possible continuous multiplications on X turning X into a commutative associative complex algebra with the unity. The properties of the multiplicative spectrum are studied. In particular, we show that K(X^n) consists of countable compact spaces with at most n non-isolated points for any separable hereditarily indecomposable Banach space X. We prove that K(C[0,1]) coincides with the class of all metrizable compact spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that for any finite ultrametric space M and any infinite-dimensional Banach space B there exists an isometric embedding of M into B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that for any Hausdorff topological vector space E over the field R there exists A subset of E such that E is homeomorphic to a subset of A x R and A x R is homeomorphic to a subset of E. Using this fact we prove that E is monotonically normal if and only if E is stratifiable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let $X$ be a real Banach space, $\omega:[0,+\infty)\to\R$ be an increasing continuous function such that $\omega(0)=0$ and $\omega(t+s)\leq\omega(t)+\omega(s)$ for all $t,s\in[0,+\infty)$. By the Osgood theorem, if $\int_{0}^1\frac{dt}{\omega(t)}=\infty$, then for any $(t_0,x_0)\in R\times X$ and any continuous map $f: R\times X\to X$ and such that $\|f(t,x)-f(t,y)\|\leq\omega(\|x-y\|)$ for all $t\in R$, $x,y\in X$, the Cauchy problem $\dot x(t)=f(t,x(t))$, $(t_0)=x_0$ has a unique solution in a neighborhood of $t_0$ . We prove that if $X$ has a complemented subspace with an unconditional Schauder basis and $\int_{0}^1\frac{dt}{\omega(t)}

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descriptive characterizations of the point, the continuous, and the residual spectra of operators in Banach spaces are put forward. In particular, necessary and sufficient conditions for three disjoint subsets of the complex plane to be the point spectrum, the continuous spectrum, and the residual spectrum of a linear continuous operator in a separable Banach space are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A locally convex space X is said to be integrally complete if each continuous mapping f: [0, 1] --> X is Riemann integrable. A criterion for integral completeness is established. Readily verifiable sufficient conditions of integral completeness are proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that for any $f$ is an element of $C^k(L,R)$, where k is a natural number and L is a closed linear subspace of a nuclear Frechet space $X$, the function $f$ can be extended to a function of class $C^{k-1}$ defined on the entire space $X$. It is also proved that for any $f$ is an element of $C^k(L, R)$, where $k$ is a natural number of infinity and L is a closed linear subspace of a dual $X$ of a nuclear Frechet space, the function $f$ can be extended to a function of class $C^k$ defined on the entire space $X$. In addition, it is proved that under these conditions, the existence of a linear extension operator is equivalent to the complementability of the subspace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we prove several results on the stratifiability of locally convex spaces. In particular, we show that a free locally convex sum of an arbitrary set of stratifiable LCS is a stratifiable LCS, and that all locally convex F'-spaces whose bounded subsets are metrizable are stratifiable. Moreover, we prove that a strict inductive limit of metrizable LCS is stratifiable and establish the stratifiability of many important general and specific spaces used in functional analysis. We also construct some examples that clarify the relationship between the stratifiability and other properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let $E$ be a nonnormable Frechet space, and let $E'$ be the space of all continuous linear functionals on $E$ in the strong topology. A continuous mapping $f : E' \to E'$ such that for any $t_0\in R$ and $x_0\in E'$, the Cauchy problem $\dot x= f(x)$, x(t_0) = x_0$ has no solutions is constructed.

Relevância:

20.00% 20.00%

Publicador: