Whitney's type theorems for infinite dimensional spaces
Data(s) |
2000
|
---|---|
Resumo |
It is proved that for any $f$ is an element of $C^k(L,R)$, where k is a natural number and L is a closed linear subspace of a nuclear Frechet space $X$, the function $f$ can be extended to a function of class $C^{k-1}$ defined on the entire space $X$. It is also proved that for any $f$ is an element of $C^k(L, R)$, where $k$ is a natural number of infinity and L is a closed linear subspace of a dual $X$ of a nuclear Frechet space, the function $f$ can be extended to a function of class $C^k$ defined on the entire space $X$. In addition, it is proved that under these conditions, the existence of a linear extension operator is equivalent to the complementability of the subspace. |
Identificador | |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2000 , ' Whitney's type theorems for infinite dimensional spaces ' Infinite Dimensional Analysis Quantum Probability and Related Topics , vol 3 , pp. 141-160 . |
Tipo |
article |