On the solvability of Hamilton's equations in Hilbert spaces
Data(s) |
2003
|
---|---|
Resumo |
We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R. |
Identificador | |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2003 , ' On the solvability of Hamilton's equations in Hilbert spaces ' Infinite Dimensional Analysis Quantum Probability and Related Topics , vol 6 , pp. 145-154 . |
Tipo |
article |