On Osgood theorem in Banach spaces
Data(s) |
2003
|
---|---|
Resumo |
Let $X$ be a real Banach space, $\omega:[0,+\infty)\to\R$ be an increasing continuous function such that $\omega(0)=0$ and $\omega(t+s)\leq\omega(t)+\omega(s)$ for all $t,s\in[0,+\infty)$. By the Osgood theorem, if $\int_{0}^1\frac{dt}{\omega(t)}=\infty$, then for any $(t_0,x_0)\in R\times X$ and any continuous map $f: R\times X\to X$ and such that $\|f(t,x)-f(t,y)\|\leq\omega(\|x-y\|)$ for all $t\in R$, $x,y\in X$, the Cauchy problem $\dot x(t)=f(t,x(t))$, $(t_0)=x_0$ has a unique solution in a neighborhood of $t_0$ . We prove that if $X$ has a complemented subspace with an unconditional Schauder basis and $\int_{0}^1\frac{dt}{\omega(t)} |
Identificador |
http://dx.doi.org/10.1002/mana.200310080 http://www.scopus.com/inward/record.url?scp=0042023603&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2003 , ' On Osgood theorem in Banach spaces ' Mathematische Nachrichten , vol 257 , pp. 87-98 . DOI: 10.1002/mana.200310080 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all) |
Tipo |
article |