952 resultados para Volatile Emissions
Resumo:
Primula obconica was introduced to Europe from Hubei, China in 1880, and has been cultivated worldwide as one of popular ornamental plants. The volatile oil of wild P. obconica collected from its original place, Yichang, Hubei was first investigated. A total of 43 compounds constituting 93.49% of the oil were identified by using GC and GC-MS. The major compounds were methyl 2,4-dihydroxy-5-methyl benzoate (30.41%), methyl 2,6-dihydroxy-4-methyl benzoate (29.27%), and hypnone (8.92%) etc. In comparison with the published data of some European cultivars, the native P. obconica seems to be allergen-free due to absence of primin and miconidin.
Resumo:
Photoluminescence of GaAs0.973Sb0.022N0.005 is investigated at different temperatures and pressures. Both the alloy band edge and the N-related emissions, which show different temperature and pressure dependences, are observed. The pressure coefficients obtained in the pressure range 0-1.4GPa for the band edge and N-related emissions are 67 and 45 meV/GPa, respectively. The N-related emissions shift to a higher energy in the lower pressure range and then begin to redshift at about 8.5 GPa. This redshift is possibly caused by the increase of the X-valley component in the N-related states with increasing pressure.
Resumo:
The temperature dependences of the orange and blue emissions in 10, 4.5, and 3 nm ZnS:Mn nanoparticles were investigated. The orange emission is from the T-4(1)-(6)A(1) transition of Mn2+ ions and the blue emission is related to the donor-acceptor recombination in the ZnS host. With increasing temperature, the blue emission has a red-shift. On the other hand, the peak energy of the orange emission is only weakly dependent on temperature. The luminescence intensity of the orange emission decreases rapidly from 110 to 300 K for the 10 nm sample but increases obviously for the 3 nm sample, whereas the emission intensity is nearly, independent of temperature for the 4.5 nm sample. A thermally activated carrier-transfer model has been proposed to explain the observed abnormal temperature behaviour of the orange emission in ZnS:Mn nanoparticles.
Resumo:
Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.
Resumo:
An ultra low power non-volatile memory is designed in a standard CMOS process for passive RFID tags. The memory can operate in a new low power operating scheme under a wide supply voltage and clock frequency range. In the charge pump circuit the threshold voltage effect of the switch transistor is almost eliminated and the pumping efficiency of the circuit is improved. An ultra low power 192-bit memory with a register array is implemented in a 0.18 mu M standard CMOS process. The measured results indicate that, for the supply voltage of 1.2 volts and the clock frequency of 780KHz, the current consumption of the memory is 1.8 mu A (3.6 mu A) at the read (write) rate of 1.3Mb/s (0.8Kb/s).
Resumo:
A novel Nd3+-doped lead fluorosilicate glass (NPS glass) is prepared by a two-step melting process. Based on the absorption spectrum a Judd-Ofelt theory analysis is made. The emission line width of NPS glass is 44.2nm. The fluorescence decay lifetime of the 4F3/2 level is 586±20μsec, and the stimulated emission cross-section is 0.87×10-20cm2 at 1056nm. A laser oscillation is occurred at 1062nm when pumped by 808nm Diode Laser. The slope efficiency is 23.7% with a 415mJ threshold. It is supposed that NPS glass is a good candidate for using in ultra-short pulse generation and amplification by the broad emission bandwidth and long fluorescence lifetime.
Resumo:
The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are from the intrinsic emissions in the studied dilute GaAsN alloys rather than some localized exciton emissions in the GaAsN alloys. The results show that the nitrogen-induced E E+ and E0 + A0 transitions in GaAsN alloys intersect at a nitrogen content of about 0.16%. It is demonstrated that a small amount of isoelectronic doping combined with micro-photoluminescence allows direct observation of above band gap transitions that are not usually accessible in photoluminescence.
Resumo:
本文主要研究了沈阳市主要绿化树种银杏(Ginkgo biloba)和油松(Pinus tabulaeformis)挥发性有机物(Volatile Organic Compounds,VOCs)排放的日变化、季节变化规律,同时采用开顶箱法研究了高浓度CO2(700 µmol•mol-1)、O3(80 nmol•mol-1)及复合作用下城市主要绿化树种银杏、蒙古栎(Quercus mongolica)、油松、华山松(Pinus armandii)VOCs排放规律,揭示了城市中树木VOCs排放的变化规律及其对高浓度CO2和O3的响应,为研究城市森林对全球变化的响应与反馈提供了科学依据。 本实验建立的热解吸与气相色谱联用方法,最小检测量为4×10-10 g,具有较高的灵敏度和精确度,可满足对树木VOCs分析的要求。研究发现,银杏和油松VOCs的释放具有显著的日变化和季节变化规律,二者夜间均不排放异戊二烯。α-蒎烯为油松释放VOCs的主要成份,同时发现油松排放的α-蒎烯,β-蒎烯,莰烯和柠檬烯之间具有显著相关关系,说明这几种化合物在遗传控制上有某种共同效应或者具有相同的代谢途径。不同树种排放的VOCs组成明显不同,银杏及蒙古栎主要排放异戊二烯,而油松和华山松主要排放单萜;蒙古栎VOCs释放量显著高于其他树种。市区树木VOCs排放速率显著高于郊区,沈阳市主要绿化树种银杏和油松VOCs的年排放量分别为12.16 t和14.48 t。大气CO2和O3浓度升高条件下,树木VOCs释放规律和排放组成,受植物种类和生长季的影响;单独提高大气CO2或O3浓度可显著影响树木VOCs的释放和组成,但是二者复合作用没有显著影响。
Resumo:
本文采用热解吸与气相色谱联用技术对沈阳市主要绿化树种银中杨(Populus alba × berolinensis)、垂柳(Salix babylonica)、榆树(Ulmus pumila)、皂角(Gleditsia japonica)、丁香(Syringa oblate)和水腊(Ligustrum obtusifolium)植物源挥发性有机物(Biogenic Volatile Organic Compounds,BVOCs)排放的日变化、季节变化规律进行了观测,并估算了这6种树的BVOCs排放通量;同时采用开顶箱法研究了高浓度CO2(700 µmol•mol-1)、O3(80 nmol•mol-1)及二者复合作用下蒙古栎(Quercus mongolica)和油松(Pinus tabulaeformis)BVOCs排放规律。研究结果如下所示: (1) 6种绿化树种BVOCs的释放具有显著的日变化和季节变化规律,且夜间几乎均不排放异戊二烯。 (2) 不同树种排放的BVOCs组成明显不同,银中杨、垂柳和蒙古栎以排放异戊二烯为主;油松主要释放α-蒎烯;榆树、皂角和丁香以释放柠檬烯为主;水腊在不同时段其BVOCs组成情况变化较大,主要释放异戊二烯、柠檬烯和α-蒎烯;其中银中杨和垂柳的BVOCs释放量明显高于其它树种。 (3) 在实测数据基础上,估算出沈阳市6种主要绿化树种银中杨、垂柳、榆树、皂角、丁香和水腊在自然条件下的BVOCs年排放量分别为104.86tC,168.66tC,3.56tC,1.27tC,4.07tC和1.33tC。 (4) 大气CO2和O3浓度升高条件下,树木BVOCs释放规律和排放物组成受植物种类和生长季的影响;单独提高大气CO2或O3浓度可显著影响树木BVOCs的释放,二者的复合作用对BVOCs释放的影响主要介于两者单独作用的结果之间。