1000 resultados para GaAs-GaAlAs
Resumo:
We have grown InAs self-assembled islands on vicinal GaAs( 001) substrates. Atomic force microscopy and photoluminescence studies show that the islands have a clear bimodal size distribution. While most of the small islands whose growth is limited by the width of one multi-atomic step have compact symmetric shapes, a large fraction of the large islands limited by the width of one step plus one terrace have asymmetric shapes which are elongated along the multi-atomic step lines. These results can be attributed to the shape-related energy of the islands at different states of their growth. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
We report on optimizing the GaAs capping layer growth of 1.3 mu m InAs quantum dots (QDs) by a combined two-temperature and annealing process at low temperatures using metalorganic chemical vapor deposition. The initial part (tnm) of the capping layer is deposited at a low temperature of 500 degrees C, which is the same for the growth of both the QDs and a 5-nm-thick In0.15Ga0.85As strain-reducing capping layer on the QDs, while the remaining part is grown at a higher temperature of 560 degrees C after a rapid temperature rise and subsequent annealing period at this temperature. The capping layer is deposited at the low temperatures (<= 560 degrees C) to avoid postgrowth annealing effect that can blueshift the emission wavelength of the QDs. We demonstrate the existence of an optimum t (=5 nm) and a critical annealing time (>= 450s) during the capping, resulting in significantly enhanced photoluminescence from the QDs. This significant enhancement in photoluminescence is attributed to a dramatic reduction of defects due to the optimized capping growth. The technique reported here has important implications for realizing stacked 1.3 mu m InAs/GaAs QD lasers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have fabricated 1.3-mu m InAs-GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-mu m InAs-GaAs QD lasers, but it does not, increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm(-1)). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.
Resumo:
We obtain low-density charged InAs quantum dots with an emission wavelength below 1 mu m using a low InAs growth rate. The quantum dots have a bimodal size distribution with an emission wavelength of around 1340 nm and 1000 nm, respectively. We observe the photoluminescence of the singly charged exciton in the modulation doped quantum dots in 77 K.
Resumo:
The photoluminescence (PL) characteristics of GaAsSbN/GaAs epilayers grown by molecular beam epitaxy (MBE) are carefully investigated. The results show that antimony (Sb) incorporation into GaNAs material has less influence on the N-induced localization states. For the same N concentration, GaAsSbN material can reach an emission wavelength near 1.3 mum more easily than GaInNAs material. The rapid thermal annealing (RTA) experiment shows that the annealing induced rearrangement of atoms and related blueshift in GaAsSbN epilayers are smaller than those in GaNAs and GaInNAs epilayers. The GaAsSbN material can keep a longer emission wavelength near 1.3 mum-emission even after the annealing treatment. Raman spectroscopy analysis gives further insight into the structure stability of GaAsSbN material after annealing. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Laterally-coupled distributed feedback (LC-DFB) laser diodes made without an epitaxial re-growth process have the advantage of a simple fabrication process. In this paper, two-dimensional optical field distribution of the fundamental quasi TE (transverse electric) mode is calculated by means of a semivectorial finite-difference method (SV-FDM). The dependence of the effective coupling coefficient (kappa(eff)) on the dutycycle of first-, second- and third-order LC-DFB LDs is investigated using modified coupled wave equations.
Resumo:
Long wavelength light emission was realized by capping InAs quantum dots (QDs) with short period GaAs/InAs superlattices (SLs) and an InGaAs strain-reducing layer (SRL). The optical properties were systematically investigated by photoluminescence tests. With increasing the periods of SLs, the emission wavelength of InAs QDs shifts from 1.27 to 1.53 mum. We explain the redshift as a result of the increased QD height with the SLs and the reduced strain in the dot caused by InGaAs SRL. (C) 2004 Published by Elsevier Ltd.
Resumo:
The in-plane optical anisotropy of several GaAs/AlGaAs quantum well samples with different well widths has been measured at room temperature by reflectance-difference spectroscopy (RDS). The RDS line shapes are found to be similar in all the samples examined here, which dominantly consist of two peak-like signals corresponding to 1HH-->1E and 1LH-->1E transition. As the well width is decreased, or the 1 ML InAs layer is inserted at one interface, the intensity of the anisotropy increases quickly. Our detail analysis shows that the anisotropy mainly arises from the anisotropic interface roughness. The results demonstrate that the RDS technique is sensitive to the interface structures.
Resumo:
Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots (QDs), which are grown at relative low temperature (460degreesC) and embedded in GaAs p-i-n structure, have been studied by dc-biased electroreflectance. Franz-Keldysh oscillations from the undoped GaAs layer are used to determine the electric field under various bias voltages. Stark shift of -34 meV for the ground-state interband transition of the QDs is observed when the electric field increases from 105 to 308 kV/cm. The separation of the electron and hole states in the growth direction of 0.4 nm, corresponding to the built-in dipole moment of 6.4x10(-29) C m, is determined. It is found that the electron state lies above that of the hole, which is the same as that predicted by theoretical calculations for ideal pyramidal InAs QDs. (C) 2004 American Institute of Physics.
Resumo:
We report a systematical study on the molecular beam epitaxy growth and optical property of (GaAs1-xSbx/In-y Ga1-yAs)/GaAs bilayer quantum well (BQW) structures. It is shown that the growth temperature of the wells and the sequence of layer growth have significant influence on the interface quality and the subsequent photoluminescence (PL) spectra. Under optimized growth conditions, three high-quality (GaAsSb0.29/In0.4GaAs)/GaAs BQWs are successfully fabricated and a room temperature PL at 1314 nm is observed. The transition mechanism in the BQW is also discussed by photoluminescence and photoreflectance measurements. The results confirm experimentally a type-II band alignment of the interface between the GaAsSb and InGaAs layers.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Different submicron ferromagnets are fabricated into GaAs and GaAs/AlGaAs superlattice through ion implantation at two different temperatures followed by thermal annealing. The structural and magnetic properties of the granular film are studied by an atomic force microscope, X-ray diffraction and alternating gradient magnetometer. By analyzing the saturation magnetization M-s, remanence M-r, coercivity H-c and remanence ratio S-q, it is confirmed that both MnGa and MnAs clusters are formed in the 350degreesC-implanted samples whereas only MnAs clusters are formed in the room-temperature implanted samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report the photoluminescence (PL) and structural properties of self-assembled InAs/GaAs quantum dots (QDs) covered by In0.2Al0.8As and In0.2Ga0.8As combination strain-reducing layer (SRL). By introducing a thin InAlAs layer, the ground state emission wavelength redshifts, and the energy splitting between the ground and first-excited states increases to 85 meV at 10 K. The energy splitting further increases to 92 meV and the temperature dependence of full width at half maximum (FWHM) changes for QDs with different SRL after the multi-stacking. These results are attributed to the fact that the combination layer has different effects on QDs compared to the InGaAs SRL.
Resumo:
High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.
Resumo:
We report the technique of the ion-implanted semi-insulating GaAs wafer used for passive Q-switched mode locking in double-cladding Yb:fiber laser. The wafer was implanted with 400-keV energy, 10(16)/cm(2) dose As+ ions, and was annealed at 600degreesC for 20 min. At the pump power of 5W, we achieved output power of 200mW. The repetition rate of envelope of Q-switched mode locking is 50-kHz with a FWHM envelope of 4mus. The repetition rate of mode locked pulse train was found to be 15-MHz. This is the first report of such a kind of laser to the best of our knowledge.