900 resultados para FAST
Resumo:
A series of new single-step methods and their corresponding algorithms with automatic step size adjustment for model equations of fiber Raman amplifiers are proposed and compared in this paper. On the basis of the Newton-Raphson method, multiple shooting algorithms for the two-point boundary value problems involved in solving Raman amplifier propagation equations are constructed. A verified example shows that, compared with the traditional Runge-Kutta methods, the proposed methods can increase the accuracy by more than two orders of magnitude under the same conditions. The simulations for Raman amplifier propagation equations demonstrate that our methods can increase the computing speed by more than 5 times, extend the step size significantly, and improve the stability in comparison with the Dormand-Prince method. The numerical results show that the combination of the multiple shooting algorithms and the proposed methods has the capacity to rapidly and effectively solve the model equations of multipump Raman amplifiers under various conditions such as co-, counter- and bi-directionally pumped schemes, as well as dual-order pumped schemes.
Resumo:
In scattering calculations using the T-matrix method, the calculation of the T-matrix involves multiplication and inversion of matrices. These two types of matrix operations are time-consuming, especially for the matrices with large size. Petrov et al. [D. Petrov, Y. Shkuratov, G. Videen, Opt. Lett. 32 (2007) 1168] proposed an optimized matrix inversion technique, which suggests the inversion of two matrices, each of which contains half the number of rows. This technique reduces time-consumption significantly. On the basis of this approach, we propose another fast calculation technique for scattering in the T-matrix method, which obtains the scattered fields through carrying out only the operations between matrices and the incident field coefficient. Numerical results show that this technique can decrease time-consumption by more than half that of the optimized matrix inversion technique by Petrov et al. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixed-signal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time. An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current. The digital processor can automatically compensate presetting frequency variation with process and temperature, and control the operation of the auxiliary tuning loop. A 1.2 GHz integer-N synthesizer with 1 MHz reference input Was implemented in a 0.18μm process. The measured results demonstrate that the typical settling time of the synthesizer is less than 3μs,and the phase noise is -108 dBc/Hz@1MHz.The reference spur is -52 dBc.
Resumo:
Silicon-on-insulator (SOI) technology offers tremendous potential for integration of optoelectronic functionson a silicon wafer. In this letter, a 1 * 1 multimode interference (MMI) Mach-Zender interferometer(MZI) thermo-optic modulator fabricated by wet-etching method is demonstrated. The modulator has anextinction ratio of -11.0 dB, extra loss of -4.9 dB and power consumption of 420 mW. The response timeis less than 30μs.
Resumo:
Stable mode-locking in a diode-pumped Yb:YAG laser was obtained with a very fast semiconductor saturable absorber mirror (SESAM). The pulse width was measured to be 4 ps at the central wavelength of 1047 nm. The average power was 200 mW and the repetition rate was 200 MHz.
Resumo:
The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
Fast plasma sintering deposition of SiC nano-structured coatings was achieved using a specially designed non-transferred dc plasma torch operated at reduced pressure. Employing the Taguchi method, the deposition parameters were optimized and verified. With the optimized combination of deposition parameters, homogeneous SiC coatings were deposited on relatively large area substrates of Φ50 mm and 50×50 mm with a deposition rate as high as 20 μm/min. Ablation test showed that such coatings can be used as oxidation resistance coatings in high temperature oxidizing environment.
Resumo:
We consider electron capture in fast collisions between a proton and hydrogen in the presence of an intense x-ray laser whose angular frequency omega is close to v(2)/2, where v is the collision velocity. We show that in such a case laser-induced capture becomes possible and that the latter proceeds via both induced photon emission and photon absorption channels and can, in principle, compete with kinematic and radiative electron capture.
Resumo:
The necessity of installing a forward tracking detector stack is discussed for the Hadron Physics LanzhoU Spectrometer(HPLUS). A local tracker is developed to solve the multi-track finding problem. The track candidates are searched iteratively via Hough Transform. The fake tracks are removed by a least square fitting process. With this tracker we have studied the feasibility of pp -> pp + phi(-> K+K-), a typical physical channel proposed on HPLUS. The single track momentum resolution due to the uncertainty of the positioning in FTD is 1.3%. The multiple scattering effect contributes about 20% to the momentum resolution in the FTD coverage. The width and the signal-to-background ratio of the reconstructed phi are 1.51 MeV and 4.36, respectively, taking into account the direct Kaon channel pp -> pp + K+K- as background. The geometry coverage of FTD for phi events is about 85.4%. Based on the current fast simulation and estimation, the geometrical configuration of FTD meets the physical requirement of HPLUS under the current luminosity and multiplicity conditions. The tracker is applicable in the full simulation coming next and is extendable to other tracking component of HPLUS.
Resumo:
For any experiment that uses the beam of an accelerator, monitoring the beam intensity is always art important concern. It is particularly useful if one can continuously measure the beam current without disturbing the beam. We report here on test experiments for an Integrating Current Transformer (ICT) used to measure fast extraction beams from the HIRFL-CSR main ring (CSRm). The laboratory tests and beam intensity measurement results are presented in this paper. The influence of the kicker noise is also analyzed.