639 resultados para 7050-T7451 aluminium alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy.Methods. Metallic frameworks (diameter: 5 min, thickness: 4 mm) (N = 96, n = 12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 mu m aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feldspathic ceramic were fired onto the alloys (thickness: 4mm). Four experimental groups were formed; Gr1 (control group): Vita Omega 900-Au-Pd alloy; Gr2: Ticeram-cpTi; Gr3: Super Porcelain Ti-22-cpTi and G4: Vita Titankeramik-cpTi. While half of the specimens from each ceramic-metal combination were randomly tested without aging (water storage at 37 C for 24h only), the other half were first thermocycled (6000 cycles, between 5 and 55 C, dwell time: 13 s) and then mechanically loaded (20,000 cycles under SON load, immersion in distilled water at 37 C). The ceramic-alloy interfaces were loaded under shear in a universal test machine (cross-head speed: 0.5 mm/min) until failure occur-red. Failure types were noted and the interfaces of the representative fractured specimens from each group were examined with stereo microscope and scanning electron microscope (SEM). in an additional study (N = 16, n = 2 per group), energy dispersive X-ray spectroscopy (EDS) analysis was performed from ceramic-alloy interfaces. Data were analyzed using ANOVA and Tukey's test.Results. Both ceramic-metal combinations (p < 0.001) and aging conditions (p < 0,001) significantly affected the mean bond strength values. Thermal- and mechanical-cycling decreased the bond strength (MPa) results significantly for Gr3 (33.4 +/- 4.2) and Gr4 (32.1 +/- 4.8) when compared to the non-aged groups (42.9 +/- 8.9, 42.4 +/- 5.2, respectively). Gr1 was not affected significantly from aging conditions (61.3 +/- 8.4 for control, 60.7 +/- 13.7 after aging) (p > 0.05). Stereomicroscope images showed exclusively adhesive failure types at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface but with a visible dark titanium oxide layer in Groups 2-4 except Gr1 where remnants of bonder ceramic was visible. EDS analysis from the interfacial zone for cpTi-ceramic groups showed predominantly 34.5-85.1% O(2) followed by 1.1-36.7% Aland 0-36.3% Si except for Super Porcelain Ti-22 where a small quantity of Ba (1.4-8.3%), S (0.7%) and Sn (35.3%) was found. In the Au-Pd alloy-ceramic interface, 56.4-69.9% O(2) followed by 15.6-26.2% Si, 3.9-10.9% K, 2.8-6% Na, 4.4-9.6% Al and 0-0.04% Mg was observed.Significance. After thermal-cycling for 6000 times and mechanical-cycling for 20,000 times, Triceram-cpTi combination presented the least decrease among other ceramic-alloy combinations when compared to the mean bond strength results with Au-Pd alloy-Vita Omega 900 combination. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of the opaque layer firing temperature and mechanical and thermal cycling on the flexural strength of a ceramic fused to commercial cobalt-chromium alloy (Co-Cr). The hypotheses were that higher opaque layer temperatures increase the metal/ceramic bond strength and that aging reduces the bond strength.Materials and Methods: Metallic frameworks (25 x 3 x 0.5 mm(3); ISO 9693) (N = 60) were cast in Co-Cr and airborne-particle abraded (Al(2)O(3): 150 mu m) at the central area of the frameworks (8 x 3 mm(2)) and divided into three groups (N = 20), according to the opaque layer firing temperature: Gr1 (control)-900 degrees C; Gr2-950 degrees C; Gr3-1000 degrees C. The opaque ceramic (Opaque, Vita Zahnfabrick, Bad Sackingen, Germany) was applied, and the glass ceramic (Vita Omega 900, Vita Zahnfabrick) was fired onto it (thickness: 1 mm). While half the specimens from each group were randomly tested without aging (water storage: 37 degrees C/24 hours), the other half were mechanically loaded (20,000 cycles; 50 N load; distilled water at 37 degrees C) and thermocycled (3000 cycles; 5 degrees C to 55 degrees C, dwell time: 30 seconds). After the flexural strength test, failure types were noted. The data were analyzed using 2-way ANOVA and Tukey's test (alpha = 0.05).Results: Gr2 (19.41 +/- 5.5 N) and Gr3 (20.6 +/- 5 N) presented higher values than Gr1 (13.3 +/- 1.6 N) (p = 0.001). Mechanical and thermal cycling did not significantly influence the mean flexural strength values (p > 0.05). Increasing the opaque layer firing temperature improved the flexural bond strength values (p < 0.05). The hypotheses were partially accepted.Conclusion: Increasing of the opaque layer firing temperature improved the flexural bond strength between ceramic fused to Co-Cr alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Fe addition on the microstructural properties and the corrosion resistance of Al-Zn-Mg alloys submitted to different heat treatments (cast, annealed and aged), has been studied in chloride solutions using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), cyclic polarization (CP) and open circuit potential (o.c.p.) measurements. The presence of 0.3% Fe in the alloy limited the growth of the MgZn2 precipitates, both in the annealed and in the quenched specimens. No effect of Cr on the grain size in the presence of Fe was found because of the accumulation of Cr in the Fe-rich particles. Fe in the Al-Zn-Mg alloys also made them more susceptible to pitting. Pitting occurred mainly near the Fe-rich particles both, under o.c.p. conditions in O-2-saturated solutions and during the CP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of additions of 2, 4, 6, 8, 10 and 12 wt.% Ag in the isothermal aging kinetics of the Cu-8 wt.% Al alloy was studied using microhardness measurements, differential scanning calorimetry, optical and scanning electron microscopy and X-ray diffractometry. The results indicate that the presence of silver is responsible for the shift of the equilibrium concentration to higher Al contents, allowing the formation of the gamma(1) phase (Al4Cu9) in this alloy. For Ag additions up to 6% the dominant kinetic process is Ag precipitation and for additions from 8 to 12% Ag the nucleation of the perlitic phase dominates. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of 4 mass% Ag addition on the thermal behavior of the Cu-9 mass% Al alloy was studied using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results showed that the presence of silver causes (Cu)-alpha+(alpha+gamma1)-->(Cu)-alpha+beta transformation to occur in two stages. In the first one, part of the produced beta phase combines with the precipitated Ag to give a silver-rich phase and in the second one the transformation is completed. The formation of this silver-rich phase seems to be enhanced at very low cooling rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Ag additions on the reverse martensitic transformation in the Cu-10 mass% Al alloy was studied using differential thermal analysis (DTA), optical (OM) and scanning electron microscopies (SEM) and X-ray diffractometry. The results indicated that Ag additions to the Cu-10 mass% Al alloy shift the equilibrium concentration to higher Al contents, allow to obtain both beta(1)' and beta' martensitic phases in equilibrium and that Ag precipitation is a process associated with the perlitic phase formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ag precipitation and dissolution reactions in the Cu-3 wt.% Al-4 wt.% Ag alloy were studied using isothermal and non-isothermal analyses. The activation energy values, obtained for the Ag precipitation reaction indicated that, when the Kissinger, Ozawa and Johnson-MehI-Avrami methods are compared, the Kissinger method is the most appropriate. Although the Johnson-Mehl-Avrami equation often does not fit precipitation data, the energy values obtained for Ag precipitation kinetics are in agreement with what was experimentally observed. For the dissolution reaction of Ag precipitates the activation energy values obtained from the Kissinger and Ozawa methods are higher than that found in the literature for the Ag dissolution in Cu. This discrepancy seems to be related to the fact that the activation energy is influenced by the heating rate. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal analysis and compression tests at room temperature have been carried out for Cu-10 wt.% Al and Cu-10 wt.% Al-10 wt.% Ag alloys samples. The results indicate that the decomposition reaction of the (beta(1)) parent phase is decreased suppressed and a martensite stabilization effect can be induced by Ag addition. The Cu-Al-Ag alloy shows some degree of shape memory capacity. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-occurrence of the beta' -> (alpha+ gamma(1)) decomposition reaction in the Cu-9 wt.% Al-6 wt.% Ag alloy, on ageing between 200 and 450 degrees C, is discussed considering the influence of Ag on point defects redistribution and energy difference between martensite and the ordered parent phase. (c) 2005 Elsevier B.V All rights reserved.