381 resultados para subspace


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperspectral sensors are being developed for remote sensing applications. These sensors produce huge data volumes which require faster processing and analysis tools. Vertex component analysis (VCA) has become a very useful tool to unmix hyperspectral data. It has been successfully used to determine endmembers and unmix large hyperspectral data sets without the use of any a priori knowledge of the constituent spectra. Compared with other geometric-based approaches VCA is an efficient method from the computational point of view. In this paper we introduce new developments for VCA: 1) a new signal subspace identification method (HySime) is applied to infer the signal subspace where the data set live. This step also infers the number of endmembers present in the data set; 2) after the projection of the data set onto the signal subspace, the algorithm iteratively projects the data set onto several directions orthogonal to the subspace spanned by the endmembers already determined. The new endmember signature corresponds to these extreme of the projections. The capability of VCA to unmix large hyperspectral scenes (real or simulated), with low computational complexity, is also illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quotient of a finite-dimensional Euclidean space by a finite linear group inherits different structures from the initial space, e.g. a topology, a metric and a piecewise linear structure. The question when such a quotient is a manifold leads to the study of finite groups generated by reflections and rotations, i.e. by orthogonal transformations whose fixed point subspace has codimension one or two. We classify such groups and thereby complete earlier results by M. A. Mikhaîlova from the 70s and 80s. Moreover, we show that a finite group is generated by reflections and) rotations if and only if the corresponding quotient is a Lipschitz-, or equivalently, a piecewise linear manifold (with boundary). For the proof of this statement we show in addition that each piecewise linear manifold of dimension up to four on which a finite group acts by piecewise linear homeomorphisms admits a compatible smooth structure with respect to which the group acts smoothly. This solves a challenge by Thurston and confirms a conjecture by Kwasik and Lee. In the topological category a counterexample to the above mentioned characterization is given by the binary icosahedral group. We show that this is the only counterexample up to products. In particular, we answer the question by Davis of when the underlying space of an orbifold is a topological manifold. As a corollary of our results we generalize a fixed point theorem by Steinberg on unitary reflection groups to finite groups generated by reflections and rotations. As an application thereof we answer a question by Petrunin on quotients of spheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wydział Matematyki i Informatyki: Zakład Teorii Interpolacji i Aproksymacji

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In particular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.