New developments on VCA unmixing algorithm
Data(s) |
27/05/2016
27/05/2016
2008
|
---|---|
Resumo |
Hyperspectral sensors are being developed for remote sensing applications. These sensors produce huge data volumes which require faster processing and analysis tools. Vertex component analysis (VCA) has become a very useful tool to unmix hyperspectral data. It has been successfully used to determine endmembers and unmix large hyperspectral data sets without the use of any a priori knowledge of the constituent spectra. Compared with other geometric-based approaches VCA is an efficient method from the computational point of view. In this paper we introduce new developments for VCA: 1) a new signal subspace identification method (HySime) is applied to infer the signal subspace where the data set live. This step also infers the number of endmembers present in the data set; 2) after the projection of the data set onto the signal subspace, the algorithm iteratively projects the data set onto several directions orthogonal to the subspace spanned by the endmembers already determined. The new endmember signature corresponds to these extreme of the projections. The capability of VCA to unmix large hyperspectral scenes (real or simulated), with low computational complexity, is also illustrated. |
Identificador |
NASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - New developments on VCA unmixing algorithm. Proceedings of SPIE. ISSN 0277-786X. Vol. 7109. pp. 71090F-1-71090F-9, 2008 0277-786X http://hdl.handle.net/10400.21/6209 10.1117/12.799838 |
Idioma(s) |
eng |
Publicador |
SPIE |
Relação |
POSC/EEACPS /61271/2004 PDCTE/CPS/49967/2003 |
Direitos |
closedAccess |
Palavras-Chave | #Vertex component analysis #Unsupervised unmixing #Hyperspectral data #Linear Mixtures |
Tipo |
conferenceObject |