763 resultados para student learning support
Resumo:
Starting with the question “How can University level Engineering Education be developed in such a way so as to enhance the quality of the student learning experience?”, this discussion paper proposes an approach to engineering education developed by a senior engineering educator working alongside a pedagogical researcher in an attempt to engage colleagues in contemporary debates about the issues currently faced across the Sector. Such issues include difficulties with recruiting students onto programmes as well as high levels of student attrition and failure. Underpinned by three distinctive concepts: Synergy, Variety & Relationships (S+V+R), the approach brings together pedagogic and engineering epistemologies in an empirically grounded framework in such a way so as to provide an accessible and relevant learning approach that, if followed, engenders student success [S2]. Specifically developed with the intention of increasing retention and positively impacting student success [S2], the S+V+R=S2 approach provides a scholarly and Synergetic (S) approach to engineering education that is both innovative and exciting. Building on the argument that Variety (V) in education is pivotal to promoting originality and creativity in learning and teaching, this paper shows how, by purposefully developing a range of learning and teaching approaches, student engagement and thus success can be increased. It also considers the importance of Relationships (R) in higher education, arguing that belonging and relationships are crucial factors impacting student experiences. When taken together (Synergy, Variety and Relationships) and applied within an Engineering Education context, students are provided with a unique learning environment – one that both promotes individual success and improves organisational effectiveness. The uniqueness of the approach is in the synthesis of these three concepts within an Engineering Education epistemology.
Resumo:
This text is designed specifically for the increasing number of students taking modules in Equality andDiversity, including those taking the CIPD specialist elective Managing Diversity and Equal Opportunities module. The authors’ combined experience is used to offer a mixture of a strong practical focus and a clear academic approach to create a balance of theory and practice. This text is the only accessible, up-to-date and student-focused text in the market that specifically features this subject area. his text is designed specifically for the increasing number of students taking a module in Equality and Diversity. The text contains a range of features to aid student learning, including: - Learning objectives - at the beginning of each chapter summarising the content of the chapter - Tasks - interactive tasks to encourage students to research around the subject - Case studies - thought-provoking examples of practice - Legal cases - examples of legal practice - Key Points - at the end of each chapter, a summary of key issues raised in the chapter - Examples to work through - at the end of each chapter, mini case examples with questions to check students' understanding.
Resumo:
Educational institutions are under pressure to provide high quality education to large numbers of students very efficiently. The efficiency target combined with the large numbers generally militates against providing students with a great deal of personal or small group tutorial contact with academic staff. As a result of this, students often develop their learning criteria as a group activity, being guided by comparisons one with another rather than the formal assessments made of their submitted work. IT systems and the World Wide Web are increasingly employed to amplify the resources of academic departments although their emphasis tends to be with course administration rather than learning support. The ready availability of information on the World Wide Web and the ease with which is may be incorporated into essays can lead students to develop a limited view of learning as the process of finding, editing and linking information. This paper examines a module design strategy for tackling these issues, based on developments in modules where practical knowledge is a significant element of the learning objectives. Attempts to make effective use of IT support in these modules will be reviewed as a contribution to the development of an IT for learning strategy currently being undertaken in the author’s Institution.
Resumo:
Aston University has been working closely with key companies from within the electricity industry for several years, initially in the development and delivery of an employer-led foundation degree programme in electrical power engineering, and more recently, in the development of a progression pathway for foundation degree graduates to achieve a Bachelors-level qualification. The Electrical Power Engineering foundation degree was developed in close consultation with the industry such that the programme is essentially owned by the sector. Programme delivery has required significant shifts away from traditional HE teaching patterns whilst maintaining the quality requirement and without compromise of the academic degree standard. Block teaching (2-week slots), partnership delivery, off-site student support and work-based learning have all presented challenges as we have sought to maximise the student learning experience and to ensure that the graduates are fit-for purpose and "hit the ground running" within a defined career structure for sponsoring companies. This paper will outline the skills challenges facing the sector; describe programme developments and delivery challenges; before articulating some observations and conclusions around programme effectiveness, impact of foundation degree graduates in the workplace and the significance of the close working relationship with key sponsoring companies. Copyright © 2012, September.
Resumo:
Technology-Enhanced Learning in Higher Education is an anthology produced by the international association, Learning in Higher Education (LiHE). LiHE, whose scope includes the activities of colleges, universities and other institutions of higher education, has been one of the leading organisations supporting a shift in the education process from a transmission-based philosophy to a student-centred, learning-based approach. Traditionally education has been envisaged as a process in which the teacher disseminates knowledge and information to the student, and directs them to perform – instructing, cajoling, encouraging them as appropriate – despite different students’ abilities. Yet higher education is currently experiencing rapid transformation, with the introduction of a broad range of technologies which have the potential to enhance student learning. This anthology draws upon the experiences of those practitioners who have been pioneering new applications of technology in higher education, highlighting not only the technologies themselves but also the impact which they have had on student learning. The anthology illustrates how new technologies – which are increasingly well-known and accepted by today’s ‘digital natives’ undertaking higher education – can be adopted and incorporated. One key conclusion is that learning remains a social process even in technology-enhanced learning contexts. So the technology-based proxies we construct need to retain and reflect the agency of the teacher. Technology-Enhanced Learning in Higher Education showcases some of the latest pedagogical technologies and their most creative, state-of-the-art applications to learning in higher education from around the world. Each of the chapters explores technology-enhanced learning in higher education in terms of either policy or practice. They contain detailed descriptions of approaches taken in very different curriculum areas, and demonstrate clearly that technology may and can enhance learning only if it is designed with the learning process of students at its core. So the use of technology in education is more linked to pedagogy than it is to bits and bytes.
Resumo:
Learning and teaching approaches to engineering are generally perceived to be difficult and academically challenging. Such challenges are reflected in high levels of student attrition and failure. In addressing this issue, a unique approach to engineering education has been developed by the paper authors. This approach, which is suitable for undergraduate and postgraduate levels, brings together pedagogic and engineering epistemologies in an empirically grounded framework. It is underpinned by three distinctive concepts: Relationships, Variety & Synergy. Based upon research, the R + V + S approach to Engineering Education provides a learning and teaching strategy, which in enhancing the student experience, increases retention and positively impacts student success [S2]. Based on the study findings, this paper shows how, by designing engineering education around the concepts of Relationships, Variety and Synergy, the student learning experience becomes one that is academically challenging yet beneficial to both students and engineering educators. The challenge is to widen and test the approach in other areas of engineering education, before going on to investigate the value of the approach in other disciplines.
Resumo:
This study examined the effectiveness of intelligent tutoring system instruction, grounded in John Anderson's ACT theory of cognition, on the achievement and attitude of developmental mathematics students in the community college setting. The quasi-experimental research used a pretest-posttest control group design. The dependent variables were problem solving achievement, overall achievement, and attitude towards mathematics. The independent variable was instructional method.^ Four intact classes and two instructors participated in the study for one semester. Two classes (n = 35) served as experimental groups; they received six lessons with real-world problems using intelligent tutoring system instruction. The other two classes (n = 24) served as control groups; they received six lessons with real-world problems using traditional instruction including graphing calculator support. It was hypothesized that students taught problem solving using the intelligent tutoring system would achieve more on the dependent variables than students taught without the intelligent tutoring system.^ Posttest mean scores for one teacher produced a significant difference in overall achievement for the experimental group. The same teacher had higher means, not significantly, for the experimental group in problem solving achievement. The study did not indicate a significant difference in attitude mean scores.^ It was concluded that using an intelligent tutoring system in problem solving instruction may impact student's overall mathematics achievement and problem solving achievement. Other factors must be considered, such as the teacher's classroom experience, the teacher's experience with the intelligent tutoring system, trained technical support, and trained student support; as well as student learning styles, motivation, and overall mathematics ability. ^
Resumo:
Public schools traditionally have been held accountable for educating the majority of the nation’s school children, and through the years, these schools have been evaluated in a variety of ways. Currently, evaluation measures for accountability purposes consist solely of standardized test scores. In the past, only test scores of general education students were analyzed. Laws governing the education of students with disabilities, however, have extended accountability measures not only to include those students, but to report their scores in a disaggregated form (No Child Left Behind Act, 2001). The recent emphasis on accountability and compliance has resulted in the need for schools to carefully examine how programs, services, and policies impact student achievement (Bowers & Figgers, 2003). ^ Standard-based school reform and accountability systems have raised expectations about student learning outcomes for all students, including those with disabilities and minority students. Yet, overall, racial/ethnic minority students are performing well below their White non-Hispanic peers in most academic areas. Additionally, with respect to special education, there exists an enduring problem of disproportionate representation of racial/ethnic minority students (National Research Council, 2000). ^ This study examined classroom placement (inclusive versus non-inclusive) relative to academic performance of urban, low socioeconomic Hispanic students with and without disabilities in secondary content area classrooms. A mixed method research design was used to investigate this important issue using data from a local school district and results from field observations. The study compared performance levels of four middle school Hispanic student subgroups (students with disabilities in inclusive settings, students without disabilities in inclusive settings, students with disabilities in resource settings, and student without disabilities in general education settings) each in their respective placements for two consecutive years, exploring existing practices within authentic settings. ^ Significant differences were found in the relationship of educational placement and achievement between grade level and disability in the areas of math and reading. Additionally, clear and important differences were observed in student-teacher interactions. Recommendations for further researchers and stakeholders include soliciting responses from teams at the schools composed of general education and special education teachers, administrative personnel, and students as well as broadening the study across grade levels and exceptionalities. ^
Resumo:
This case study traced the process in which Florida International University engaged to determine what students want and need from their undergraduate education. Using grounded theory, the authors discovered that the process was reflective of the human capability approach in the development of its global learning student learning outcomes.
Resumo:
This study took place at one of the intercultural universities (IUs) of Mexico that serve primarily indigenous students. The IUs are pioneers in higher education despite their numerous challenges (Bertely, 1998; Dietz, 2008; Pineda & Landorf, 2010; Schmelkes, 2009). To overcome educational inequalities among their students (Ahuja, Berumen, Casillas, Crispín, Delgado et al., 2004; Schmelkes, 2009), the IUs have embraced performance-based assessment (PBA; Casillas & Santini, 2006). PBA allows a shared model of power and control related to learning and evaluation (Anderson, 1998). While conducting a review on PBA strategies of the IUs, the researcher did not find a PBA instrument with valid and reliable estimates. The purpose of this study was to develop a process to create a PBA instrument, an analytic general rubric, with acceptable validity and reliability estimates to assess students' attainment of competencies in one of the IU's majors, Intercultural Development Management. The Human Capabilities Approach (HCA) was the theoretical framework and a sequential mixed method (Creswell, 2003; Teddlie & Tashakkori, 2009) was the research design. IU participants created a rubric during two focus groups, and seven Spanish-speaking professors in Mexico and the US piloted using students' research projects. The evidence that demonstrates the attainment of competencies at the IU is a complex set of actual, potential and/or desired performances or achievements, also conceptualized as "functional capabilities" (FCs; Walker, 2008), that can be used to develop a rubric. Results indicate that the rubric's validity and reliability estimates reached acceptable estimates of 80% agreement, surpassing minimum requirements (Newman, Newman, & Newman, 2011). Implications for practice involve the use of PBA within a formative assessment framework, and dynamic inclusion of constituencies. Recommendations for further research include introducing this study's instrument-development process to other IUs, conducting parallel mixed design studies exploring the intersection between HCA and assessment, and conducting a case study exploring assessment in intercultural settings. Education articulated through the HCA empowers students (Unterhalter & Brighouse, 2007; Walker, 2008). This study aimed to contribute to the quality of student learning assessment at the IUs by providing a participatory process to develop a PBA instrument.
Resumo:
College personnel are required to provide accommodations for students who are deaf and hard of hearing (D/HoH), but few empirical studies have been conducted on D/HoH students as they learn under the various accommodation conditions (sign language interpreting, SLI, real-time captioning, RTC, and both). Guided by the experiences of students who are D/HoH at Miami-Dade College (MDC) who requested RTC in addition to SLI as accommodations, the researcher adopted Merten’s transformative-emancipatory theoretical framework that values perceptions and voice of students who are D/HoH. A mixed methods design addressed two research questions: Did student learning differ for each accommodation? What did students experience while learning through accommodations? Participants included 30 students who were D/HoH (60% women). They represented MDC’s majority minority population: 10% White (non-Hispanic), 20% Black (non-Hispanic, including Haitian/Caribbean), 67% Hispanic, and 3% other. Hearing loss, ranged from severe-profound (70%) to mild-moderate (30%). All were able to communicate with American Sign Language: Learning was measured while students who were D/HoH viewed three lectures under three accommodation conditions (SLI, RTC, SLI+RTC). The learning measure was defined as the difference in pre- and post-test scores on tests of the content presented in the lectures. Using repeated measure ANOVA and ANCOVA, confounding variables of fluency in American Sign Language and literacy skills were treated as covariates. Perceptions were obtained through interviews and verbal protocol analysis that were signed, videotaped, transcribed, coded, and examined for common themes and metacognitive strategies. No statistically significant differences were found among the three accommodations on the learning measure. Students who were D/HoH expressed thoughts about five different aspects of their learning while they viewed lectures: (a) comprehending the information, (b) feeling a part of the classroom environment, (c) past experiences with an accommodation, (d) individual preferences for an accommodation, (e) suggestions for improving an accommodation. They exhibited three metacognitive strategies: (a) constructing knowledge, (b) monitoring comprehension, and (c) evaluating information. No patterns were found in the types of metacognitive strategies used for any particular accommodation. The researcher offers recommendations for flexible applications of the standard accommodations used with students who are D/HoH.
Resumo:
This study examined the effectiveness of intelligent tutoring system instruction, grounded in John Anderson's ACT theory of cognition, on the achievement and attitude of developmental mathematics students in the community college setting. The quasi-experimental research used a pretest-posttest control group design. The dependent variables were problem solving achievement, overall achievement, and attitude towards mathematics. The independent variable was instructional method. Four intact classes and two instructors participated in the study for one semester. Two classes (n = 35) served as experimental groups; they received six lessons with real-world problems using intelligent tutoring system instruction. The other two classes (n = 24) served as control groups; they received six lessons with real-world problems using traditional instruction including graphing calculator support. It was hypothesized that students taught problem solving using the intelligent tutoring system would achieve more on the dependent variables than students taught without the intelligent tutoring system. Posttest mean scores for one teacher produced a significant difference in overall achievement for the experimental group. The same teacher had higher means, not significantly, for the experimental group in problem solving achievement. The study did not indicate a significant difference in attitude mean scores. It was concluded that using an intelligent tutoring system in problem solving instruction may impact student's overall mathematics achievement and problem solving achievement. Other factors must be considered, such as the teacher's classroom experience, the teacher's experience with the intelligent tutoring system, trained technical support, and trained student support; as well as student learning styles, motivation, and overall mathematics ability.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
Students reflect more on their learning in course subjects when they participate in managing their teaching–learning environment. As a form of guided participation, peer assessment serves the following purposes: (a) it improves the student’s understanding of previously established learning objectives; (b) it is a powerful metacognitive tool; (c) it transfers to the student part of the responsibility for assessing learning, which means deciding which learning activities are important and choosing the degree of effort a course subject will require; (d) it emphasizes the collective aspect of the nature of knowledge; and (e) the educational benefits derived from peer assessment clearly justify the efforts required to implement activities. This paper reports on the relative merits of a learning portfolio compiled during fine arts-related studies in which peer assessment played an important role. The researchers analyzed the student work load and the final marks students received for compulsory art subjects. They conclude that the use of a closed learning portfolio with a well-structured, sequential and analytical design can have a positive effect on student learning and that, although implementing peer assessment may be complex and students need to become familiar with it, its use is not only feasible but recommendable.
Resumo:
Laboratory classes provide a visual and practical way of supplementing traditional teaching through lectures and tutorial classes. A criticism of laboratories in our School is that they are largely based on demonstration with insufficient participation by students. This provided the motivation to create a new laboratory experiment which would be interactive, encourage student enthusiasm with the subject and improve the quality of student learning.
The topic of the laboratory is buoyancy. While this is a key topic in the first-year fluids module, the laboratory has been designed in such a way that prior knowledge of the topic is unnecessary and therefore it would be accessible by secondary school pupils. The laboratory climaxes in a design challenge. However, it begins with a simple task involving students identifying some theoretical background information using given websites. They then have to apply their knowledge by developing some equations. Next, given some materials (a sheet of tinfoil, card and blu-tack), they have to design a vessel to carry the greatest mass without sinking. Thus, they are given an open-ended problem and have to provide a mathematical justification for their design. Students are expected to declare the maximum mass for their boat in advance of it being tested to create a sense of competition and fun. Overall, the laboratory involves tasks which begin at a low level and progressively get harder, incorporating understanding, applying, evaluating and designing (with reference to Bloom’s taxonomy).
The experiment has been tested in a modern laboratory with wall-mounted screens and access to the internet. Students enjoyed the hands-on aspect and thought the format helped their learning.
The use of cheap materials which are readily available means that many students can be involved at one time. Support documentation has been produced, both for the student participants and the facilitator. The latter is given advice on how to guide the students (without simply giving them the answer) and given some warning about potential problems the students might have.
The authors believe that the laboratory can be adapted for use by secondary school pupils and hope that it will be used to promote engineering in an engaging and enthusing way to a wider audience. To this end, contact has already been made with the Widening Participation Unit at the University to gain advice on possible next steps.