805 resultados para arts-media design
Resumo:
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.
Resumo:
We present a new model for the Sun's global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small- scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms, to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2:5 Rʘ, around 10 - 100 times less than that determined for typical HMI synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is presently observed, and hence a much higher cosmic ray flux at Earth.
Resumo:
This analysis paper presents previously unknown properties of some special cases of the Wright function whose consideration is necessitated by our work on probability theory and the theory of stochastic processes. Specifically, we establish new asymptotic properties of the particular Wright function 1Ψ1(ρ, k; ρ, 0; x) = X∞ n=0 Γ(k + ρn) Γ(ρn) x n n! (|x| < ∞) when the parameter ρ ∈ (−1, 0)∪(0, ∞) and the argument x is real. In the probability theory applications, which are focused on studies of the Poisson-Tweedie mixtures, the parameter k is a non-negative integer. Several representations involving well-known special functions are given for certain particular values of ρ. The asymptotics of 1Ψ1(ρ, k; ρ, 0; x) are obtained under numerous assumptions on the behavior of the arguments k and x when the parameter ρ is both positive and negative. We also provide some integral representations and structural properties involving the ‘reduced’ Wright function 0Ψ1(−−; ρ, 0; x) with ρ ∈ (−1, 0) ∪ (0, ∞), which might be useful for the derivation of new properties of members of the power-variance family of distributions. Some of these imply a reflection principle that connects the functions 0Ψ1(−−;±ρ, 0; ·) and certain Bessel functions. Several asymptotic relationships for both particular cases of this function are also given. A few of these follow under additional constraints from probability theory results which, although previously available, were unknown to analysts.
Resumo:
We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5 +093347, WISEPC 150649.97+702736.0, and WISEPA J174124.26+255319.5.We have placed robust 3s upper limits on the flux density in the 111 – 169 MHz frequency range for these targets: WISE 1506: < 0:72 mJy; WISE 1741: < 0:87 mJy; SIMP 0136: < 0:66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources.
Resumo:
This study collected a sample of YouTube videos in which parents recorded their young children utilizing mobile touchscreen devices. Focusing on the more frequently viewed and highly-discussed videos, the paper analyzes the ways in which babies’ ‘digital dexterity’ is coded and understood in terms of contested notions of ‘naturalness’, and how the display of these capabilities is produced for a networked public. This reading of the ‘baby-iPad encounter’ helps expand existing scholarly concepts such as parental mediation and technology domestication. Recruiting several theoretical frameworks, the paper seeks to go beyond concerns of mobile devices and immobile children by analyzing children’s digital dexterity not just as a kind of mobility, but also as a set of reciprocal mobilizations that work across domestic, virtual and publically networked spaces.
Resumo:
This article discusses the potential of audio games based on the evaluation of three projects: a story-driven audio role-playing game (RPG), an interactive audiobook with RPG elements, and a set of casual sound-based games. The potential is understood, both in popularity and playability terms. The first factor is connected to the degree of players’ interest, while the second one to the degree of their engagement in sound-based game worlds. Although presented projects are embedded within the landscape of past and contemporary audio games and gaming platforms, the authors reach into the near future, concluding with possible development directions for this non-visual interactive entertainment.
Resumo:
This article offers an overview of various approaches, which have been used to examine video game characters. In its first part I am introducing several methodological directions, focusing on: characters as functions, characters as drivers of agency, representational gendered icons, and as players’ re-embodied realisations. In the second part I am focusing on the first holistic research method for player character in offline computer role-playing games (cRPGs). The proposed Pivot Player Character Model provides a method replicable across the cRPG genre and illustrates the experience of gameplay as perceived through the PC’s eyes. It has been largely inspired by Anne Ubersfeld’s semiological dramatic character research.
Resumo:
This article introduces a theoretical framework for the analysis of the player character (PC) in offline computer role-playing games (cRPGs). It derives from the assumption that the character constitutes the focal point of the game, around which all the other elements revolve. This underlying observation became the foundation of the Player Character Grid and its constituent Pivot Player Character Model, a conceptual framework illustrating the experience of gameplay as perceived through the PC’s eyes. Although video game characters have been scrutinised from many different perspectives, a systematic framework has not been introduced yet. This study aims to fill that void by proposing a model replicable across the cRPG genre. It has been largely inspired by Anne Ubersfeld’s semiological dramatic character research implemented in Reading Theatre I (1999) and is demonstrated with reference to The Witcher (CD Projekt RED 2007).
Resumo:
The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.
Resumo:
We present a summary of the series representations of the remainders in the expansions in ascending powers of t of 2/(et+1)2/(et+1) , sech t and coth t and establish simple bounds for these remainders when t>0t>0 . Several applications of these expansions are given which enable us to deduce some inequalities and completely monotonic functions associated with the ratio of two gamma functions. In addition, we derive a (presumably new) quadratic recurrence relation for the Bernoulli numbers Bn.