932 resultados para OPTICAL PARAMETRIC GENERATOR
Resumo:
Purpose: To determine whether the need for retreatment after an initial phase of 3 monthly intravitreal injections of ranibizumab shows an intra-individual regular rhythm and to what degree it varies between different patients. Methods: Prospective study with 42 patients with exudative AMD, treatment naïve. Loading dose of 3 monthly doses of ranibizumab (0,5 mg), followed by a 12 months pro re nata (PRN) regimen according to early exudative signs on HD-OCT Cirrus, Zeiss. The follow-up visits were intensified (week 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, etc after each injection) in order to detect recurrences early, and injection followed within 3 days in cases of subretinal fluid, cysts, or central thickness increase of>50microns. Intervals were calculated between injections for the 12 month follow-up with PRN treatment. Variability was expressed as standard deviation (SD). Results: Visual acuity (VA) improved from a mean ETDRS score of 61.6 (SD 10.8) at baseline to 68.0 (SD 10.2) at month 3 and to 74.7(SD 9.0) at month 12. The 15 patients who have already completed the study showed maintenance of the VA improvement. Central foveal thickness improved from a mean value of 366 microns (baseline) to 253 microns (month 3), well maintained thereafter. Mean number of injections was 8.8 (SD 3.5,range 0-12) per 12 months of follow-up (after 3 doses), with mean individual treatment-recurrence (TR) intervals ranging from 28->365 days (mean 58). Intraindividual variability of TR intervals (SD) was 7.1 days as a mean value (range 1.7¡V22.6). It ranged within 20% of the mean intra-individual interval for 30 (91%) and within 15% for 21 patients (64%). The first interval was within 1 week of the mean intra-individual interval in 64% and within 2 weeks in 89% of patients. Conclusions: The majority of AMD patients showed a relatively stable rhythm for PRN injections of ranibizumab after initial loading phase, associated with excellent functional/anatomical results. The initial interval last loading dose-first recurrence may have a predictive value for further need of treatment, potentially facilitating follow-up and patient care.
Resumo:
Purpose: To evaluate whether parametric imaging with contrast material-enhanced ultrasonography (US) is superior to visual assessment for the differential diagnosis of focal liver lesions (FLLs). Materials and Methods: This study had institutional review board approval, and verbal patient informed consent was obtained. Between August 2005 and October 2008, 146 FLLs in 145 patients (63 women, 82 men; mean age, 62.5 years; age range, 22-89 years) were imaged with real-time low-mechanical-index contrast-enhanced US after a bolus injection of 2.4 mL of a second-generation contrast agent. Clips showing contrast agent uptake kinetics (including arterial, portal, and late phases) were recorded and subsequently analyzed off-line with dedicated image processing software. Analysis of the dynamic vascular patterns (DVPs) of lesions with respect to adjacent parenchyma allowed mapping DVP signatures on a single parametric image. Cine loops of contrast-enhanced US and results from parametric imaging of DVP were assessed separately by three independent off-site readers who classified each lesion as benign, malignant, or indeterminate. Sensitivity, specificity, accuracy, and positive and negative predictive values were calculated for both techniques. Interobserver agreement (κ statistics) was determined. Results: Sensitivities for visual interpretation of cine loops for the three readers were 85.0%, 77.9%, and 87.6%, which improved significantly to 96.5%, 97.3%, and 96.5% for parametric imaging, respectively (P < .05, McNemar test), while retaining high specificity (90.9% for all three readers). Accuracy scores of parametric imaging were higher than those of conventional contrast-enhanced US for all three readers (P < .001, McNemar test). Interobserver agreement increased with DVP parametric imaging compared with conventional contrast-enhanced US (change of κ from 0.54 to 0.99). Conclusion: Parametric imaging of DVP improves diagnostic performance of contrast-enhanced US in the differentiation between malignant and benign FLLs; it also provides excellent interobserver agreement.
Resumo:
The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.
Resumo:
The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2''R, 4''R (pyochelin I) and 4'R, 2''S, 4''R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed.
Resumo:
Observations of the extraordinarily bright optical afterglow (OA) of GRB 991208 started 2.1 d after the event. The flux decay constant of the OA in the R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect, and after that it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB OA. A negative detection in several all-sky films taken simultaneously to the event implies either a previous additional break prior to 2 d after the occurrence of the GRB (as expected from the jet effect). The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events. Once the afterglow emission vanished, contribution of a bright underlying SN is found, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB coincides within 0.2' with the host galaxy, thus given support to a massive star origin. The absolute magnitude is M_B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1 Mo/yr. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0) implying a cooling frequency below the optical band, i.e. supporting a jet model with p = -2.30 as the index of the power-law electron distribution.
Resumo:
I, H¿ and [SII] CCD images of the regions around 4 young IRAS sources embedded in the dense molecular cloud cores CB 6, CB 39, AFGL 5142, and L 1251 are presented. Reflection nebulosities are found in all 4 regions. Herbig-Haro objects are detected in AFGL 5142 and L 1251. In both cases, the HH objects are new discoveries.
Resumo:
We present I-band deep CCD exposures of the fields of galactic plane radio variables. An optical counterpart, based on positional coincidence, has been found for 15 of the 27 observed program objects. The Johnson I magnitude of the sources identified is in the range 18-21.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.